approximate 4th root of 75, Newton's Method, calculus 1 tutorial

  Рет қаралды 68,507

bprp calculus basics

bprp calculus basics

Күн бұрын

Пікірлер: 75
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
👉 How to get the newton's method formula: kzbin.info/www/bejne/n4eypIhqqdOiq80
@exynosnemea2937
@exynosnemea2937 2 жыл бұрын
After a long day of doing calculus, it's fun to go back to approximating irrationals in a new way. Thanks Steve. Stay being a Gigachad.
@volodymyrgandzhuk361
@volodymyrgandzhuk361 2 жыл бұрын
Fun fact: if you try to approximate √75 with the tangent/differential method Steve showed in one of his videos, and then do the same thing for the square root of the result (because the 4th root is basically the square root of the square root), you will get exactly what he got here the first time he applied the Newton method formula.
@Zeusbeer
@Zeusbeer 2 жыл бұрын
It's because it is the same principle but newtons method just iterates it
@volodymyrgandzhuk361
@volodymyrgandzhuk361 2 жыл бұрын
@@Zeusbeer yes, I know it's the same principle
@Need4Speeeeed
@Need4Speeeeed 2 жыл бұрын
He used calculator 4times Why not calculate it directly
@volodymyrgandzhuk361
@volodymyrgandzhuk361 2 жыл бұрын
@@Need4Speeeeed where did you see he used a calculator?
@Need4Speeeeed
@Need4Speeeeed 2 жыл бұрын
@@volodymyrgandzhuk361 hhhhh.how he calculated 8 fours
@kabirsethi2608
@kabirsethi2608 2 жыл бұрын
I have another method. The closest perfect power is 81 which is 3^4. Now we know that 81>75 so 3>fourth root(75). Now that means obviously, 3-fourth root(75)>0 . now raise this to the power 4. This becomes, 156-108 cube root(75)+270 root3-60 fourth root (675)>0 now upon some rearrangement we get that, cuberoot75>156+270 root3- fourth root(675) all divided by 108. This is tedious but it gives the very close approximation of fourth root of 75. Please correct me if there are errors
@3manthing
@3manthing 2 жыл бұрын
3:45 reading 2.9444444 aloud, reminded me about that olympiad problem you also did (you were also saying number 4 a lot in that video). Calculate the sum of digits of the sum of the digits of the sum of the digits of the number 4444⁴⁴⁴⁴(i think).
@jacobcarlson4889
@jacobcarlson4889 2 жыл бұрын
I was working on the derivative on natural log in calculus and attempted to find the derivative of y=ln([x(x^(2)+1)^2)/sqrt(2x^(2)-1)] and I would like to see your approach. (sorry if it is hard to read based on how I typed it.
@jon2422
@jon2422 2 жыл бұрын
just split it up using logarithmic properties and take the derivative from there
@jacobcarlson4889
@jacobcarlson4889 2 жыл бұрын
@@jon2422 I always forget about log properties, I didn't think about that. Thanks
@mikejackson19828
@mikejackson19828 2 жыл бұрын
Thanks for this, Steve! I have learnt something new! 😀😀😀
@Mathematician6124
@Mathematician6124 2 жыл бұрын
Learned something great bro. May you live healthy, wealthy brainy and long.
@etgaming6063
@etgaming6063 2 жыл бұрын
I got lost halfway through but then it all made sense by the end👌🏻 this is a cool method that I have never heard of before and I have a physics degree.
@danny89620
@danny89620 2 жыл бұрын
Really? This was taught first year in my physics degree.
@etgaming6063
@etgaming6063 2 жыл бұрын
@@danny89620 Well clearly not every university teaches the same material.
@arjunkc3227
@arjunkc3227 2 жыл бұрын
Probably you have never done numerical methods.
@abi3135
@abi3135 2 жыл бұрын
@@etgaming6063 you never had a course on numerical methods?
@jackomeme
@jackomeme Жыл бұрын
Isn't the algorithm used in the fast inverse square root of quake 3 ?
@joewilson846
@joewilson846 2 жыл бұрын
Very clear method thank you, helped a lot!!
@whodafaqdis
@whodafaqdis 2 ай бұрын
Watching 20 mins before exam, thanks.
@zachk8356
@zachk8356 Ай бұрын
absolute legend
@its_lucky2526
@its_lucky2526 7 ай бұрын
fourth root of 75 is same as 75^1/4. this means to mupltiple 75 by 1/4 of itself, so 17.5/4 = 18.75
@algirdasltu1389
@algirdasltu1389 6 ай бұрын
No what you just did is simple mutiplication. 18.75^4 =/= 75
@nerduto1
@nerduto1 2 жыл бұрын
Loved it!
@idkyet9458
@idkyet9458 2 жыл бұрын
just when i thought this would be good for olympiad... also i just realised olympiad questions would probably have all the √s cancel out or be a perfect square
@SampleroftheMultiverse
@SampleroftheMultiverse 4 ай бұрын
13 This process’s load deflection curve is sawtooth like in your video Mechanical properties related to a unique variation of Euler’s Contain Column studies. It shows how materials (representing fields) naturally respond to induced stresses in a “quantized“ manor. This process, unlike harmonic oscillators can lead to formation of stable structures. The quantized responses closely models the behaviors known as the Quantum Wave Function as described in modern physics. The effect has been used to make light weight structures and shock mitigating/recoiled reduction systems. The model shows the known requirement of exponential load increase and the here-to-for unknown collapse of resistance during transition, leading to the very fast jump to the next energy levels. This is shown by the saw-tooth graph’s bifurcation during the quantum jump. In materials the process continues till the load passes the ultimate tensile strength. Fields are not bounded by these conditions. kzbin.info/www/bejne/raOlpKSfepWpfZYsi=waT8lY2iX-wJdjO3
@ClarissaRose
@ClarissaRose Жыл бұрын
Thank you so much!!!!!
@Rafi_Bin_Haider-Ali
@Rafi_Bin_Haider-Ali Жыл бұрын
My man put microphone into pokemon ball💀💀
@ReedNester
@ReedNester Жыл бұрын
Life. Saver.
@dushyanthabandarapalipana5492
@dushyanthabandarapalipana5492 2 жыл бұрын
Thanks!
@Ayyouboss
@Ayyouboss Жыл бұрын
Imagine using a calculator to use newtons method but not being able to calculate sqrt(75) 😄
@samiunalimsaadofficial
@samiunalimsaadofficial Жыл бұрын
Imagine saying the fourth root of 75 =sqrt(75)😂😂
@Muck-qy2oo
@Muck-qy2oo 9 ай бұрын
Newtons method doesn't need more than the four basic mathematical operations: -+*/
@witek.pl14
@witek.pl14 Ай бұрын
​@@Muck-qy2oo and because of it it is used by computers to calculate roots of any degree to very high accuracy in many iterations
@neutronenstern.
@neutronenstern. 2 жыл бұрын
well if i want to approx it in my head i will still stick to try and error i guess.
@pebble6248
@pebble6248 2 жыл бұрын
I think this method is geometric beauty.
@jr_kulik
@jr_kulik 2 жыл бұрын
Now do this in your head entirely lmao.
@muwanguzidavid-x4h
@muwanguzidavid-x4h 2 ай бұрын
thank u
@dinosaric4862
@dinosaric4862 2 жыл бұрын
Does he forget to cut some parts in the video haha
@DilipKumar-ns2kl
@DilipKumar-ns2kl 2 жыл бұрын
We may use a general formula to find the nth root of x given that x^n.=N. General formula ------------ x=[(n-1)x+{N/x^(n-1)}]/n m+1 m m Here n=4, N=75. Taking m =1 & x=3 we get 1 x=[(4-1)3+{75/3^3}]/4 =2.94444444 2 x=2.9428322282 3 x=2.942830956 4 x=2.942830956 5 Hence x=2.942830956.
@DilipKumar-ns2kl
@DilipKumar-ns2kl 2 жыл бұрын
It is based on Newton's formula & easy to use.
@azizolahkarimian7158
@azizolahkarimian7158 2 жыл бұрын
Hi Can you calculation ; (9797979797)^1/50 =X By Casio fx - 3600P calculater ; By the Newton Methode ?
@7-minutesentertainer679
@7-minutesentertainer679 8 ай бұрын
How u taken X1 value?
@Rando2101
@Rando2101 5 ай бұрын
just use a number that's close to the answer
@madhavsoni2144
@madhavsoni2144 2 жыл бұрын
using differentials with linear approximation is far easier..... just an oπnion
@ayaanpatel9667
@ayaanpatel9667 2 жыл бұрын
hey bprp why dont u post videos on ur blackpenredpen channel? as alwaz gr8 video tho
@axbs4863
@axbs4863 2 жыл бұрын
Confused me a little bit with that looped intro lmao
@tlgergun7470
@tlgergun7470 2 жыл бұрын
r^5
@tanishdesai7652
@tanishdesai7652 2 жыл бұрын
It looks similar to the approximation method used in calculus
@TheGalactik
@TheGalactik 2 жыл бұрын
That's cool
@koud29
@koud29 2 жыл бұрын
Counting the seven fours as if 3-1/18 would not be fours all the way. :D
@NXT_LVL_DVL
@NXT_LVL_DVL 2 жыл бұрын
I need a proof for the formula
@arniie5288
@arniie5288 2 жыл бұрын
Just search it up
@holyshit922
@holyshit922 2 жыл бұрын
I would calculate square root twice with paper and pencil method In paper and pencil method I need to calculate twice as much digits for the first square root as I want in final result With paper and pencil method i calculated up to 4 digits after decimal point
@gkotsetube
@gkotsetube 2 жыл бұрын
Thank you! I was going to say the same thing. It is far quicker and more accurate to calculate 2 square roots by hand, than to do all these multiplications and divisions. Newton's method is not for 🖋️ and 📄.
@holyshit922
@holyshit922 2 жыл бұрын
@@gkotsetube Also QR method for eigenvalues is not so great for finding numerical roots of polynomial equation with paper and pencil
@nikolakosanovic9931
@nikolakosanovic9931 2 жыл бұрын
Why did you repeat first sentence twice
@camnewell7139
@camnewell7139 2 жыл бұрын
who else tryna get that web assign answer ?
@krabzmorningstar6240
@krabzmorningstar6240 2 жыл бұрын
lol he forgot to cut out his re-take at the start of the video, little joke :)
@derarken73
@derarken73 2 жыл бұрын
why use newtons method with a calculator instead of calculating the irrational number with a calc itself lol
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
What's the point of the method if you have to use a calculator anyway
@ត្រដែតបញ្ញាបុណ្យ
@ត្រដែតបញ្ញាបុណ្យ 2 жыл бұрын
Fun
@afj810
@afj810 2 жыл бұрын
Just binary search tho?
@kienthanhle6230
@kienthanhle6230 2 жыл бұрын
This method sometimes works way better than binary search tho. I tested both binary search and Newton's method to calculate sqrt(2) and I found out that Newton method converges way faster than binary search (e.g the Newton's method double the correct digit every round of calculation, while binary search got 1 more correct digit every 3 round of calculation)
@IlIlllIlll
@IlIlllIlll 2 жыл бұрын
Im the 999 like😂 26.6.22 22:56
@bollyfan1330
@bollyfan1330 2 жыл бұрын
These are useless, since it is too cumbersome to really compute in their mind or by hand each of these steps. If you used a calculator then that's ok, but then if I had a calculator I would just type in "75 (x^y) 0.25" and get the answer in one shot. This is OK to show that the method works in principle. You should choose the example of a function that is complicated enough that there is not a known way to compute the root easily even with a calculator. As for this function here is how I can do it in my mind with even fewer steps and without a calculator, that is pretty much analogous to Newton's method: 75^0.25 = sqrt(sqrt(75)) = sqrt(sqrt(25*3)) = sqrt(5 * sqrt(3)) = sqrt(10 * 1.732 / 2) = sqrt(10 * 0.866) = sqrt(8.66) Let: x = sqrt(8.66) x^2 = 8.66 Let x = k - y, where y is much smaller than k x^2 = (k - y)^2 = 8.66 k^2 - 2 k y + y^2 = 8.66 2 k y = k^2 - 8.66 + y^2 y = (k^2 - 8.66) / (2 k) + y^2 / (2 k) Since y is small, y^2 will be tiny and can be ignored as an approximation, giving, y = (k^2 - 8.66) / (2 k) We know that x is just slightly lower than 3, so lets start with approximation of k = 3 y = (3^2 - 8.66) / (2 * 3) y = (9 - 8.66) / 6 y = 0.34 / 6 = 34 / 600 = 17 / 300 = 5.666666 / 100 = 0.0566666.... y = 0.0566666.... x = 3 - y x = 3 - 0.0566666.... x = 2.94333333.... This is already very close to the correct answer of: 2.9428309563827118453573116740982 | ERROR | = 0.0005023769506214879760216592351 This is correct to 3 decimal places already, which is very good, but we could approximate much better with putting back the ignored term. Lets go back to equation before approximation: y = (k^2 - 8.66) / (2 k) + y^2 / (2 k) y = (current value of y) + (current value of y)^2 / 6 y = 0.0566666.... + (0.0566666....)^2 / 6 y = ~ 0.0566666.... + (0.06)^2 / 6 y = ~ 0.0566666.... + 0.0036 / 6 y = ~ 0.0566666.... + 0.0006 y = ~ 0.0572666.... x = 3 - y x = 3 - 0.0572666.... x = 2.9427333... | ERROR | = 0.0000976230493785120239783407649 This is correct to 4 decimal places If you want one more iteration, then choose k value equal to x, or at least much closer to x than before e.g. choose k2 = 2.95 based on above x approximation and similarly iterate on: y2 = (k2^2 - 8.66) / (2 k2) and x2 = k2 - y2 Next iteration after that would be: k3 = x2 y3 = (k3^2 - 8.66) / (2 k3) and x3 = k3 - y3 ...
@eboone
@eboone 2 жыл бұрын
Ok
@dunemae
@dunemae 8 ай бұрын
Some of us are not allowed to use a calculator...so no this is not useless
@GoodMrSquare
@GoodMrSquare Жыл бұрын
👍👍👍
@wahyuamirulloh8506
@wahyuamirulloh8506 2 жыл бұрын
:)
Square Root of 2, Newton's method vs Euler's method
12:27
blackpenredpen
Рет қаралды 394 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
Newton's method (introduction & example)
20:53
blackpenredpen
Рет қаралды 213 М.
so you want to use L'Hospital's Rule?
7:02
bprp calculus basics
Рет қаралды 32 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
CALCULUS 3 | Torsion of a Space Curve: Normal and Binormal Vectors and Torsion
15:36
use local linear approximation, no calculator!
7:00
bprp calculus basics
Рет қаралды 26 М.
How Many Queens to BEAT Magnus?
15:39
iwantcheckmate
Рет қаралды 13 М.
If you're ambitious but lazy, please watch this video...
12:57
Mark Tilbury
Рет қаралды 432 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 104 М.
3,502,960 Players Fell for These Opening TRAPS
15:30
Remote Chess Academy
Рет қаралды 10 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН