👉 How to get the newton's method formula: kzbin.info/www/bejne/n4eypIhqqdOiq80
@maximeclere99022 жыл бұрын
4:58 XD the answer has 2.7 and 3.14 in it
@WerewolfLord2 жыл бұрын
4:55 The answer is approximately 2.7.....[suspenseful music plays*] *it doesn't but it should
@owoLight2 жыл бұрын
*audible gasp*
@tejarex2 жыл бұрын
Newton's method works great when it works, but it fails when the initial guess is not good enough, which is pretty easy in general. Given a continuous function f and 2 points where f has opposite signs, finding an intermediate root by bisection, always keeping two points with opposite signs, is guaranteed to work. For this example, assuming that the 2.63 root is unique, one would check 2.5, 2.75, 2.625, 2.6875, 2.65625, etc.
@andikusnadi19792 жыл бұрын
12x^3 not 12x^2
@boldspider69235 ай бұрын
very straightforward, thanks Bro
@robertveith63832 жыл бұрын
@ blackpenredpen -- I don't see your rationale for picking x_1 to be 3. I would have averaged the endpoint values and used 2.5 instead.
@NattyPi2 жыл бұрын
my profesor didnt really explain it either and what sucks is we have an exam coming up and all the examples have been to 6 decimal places which means if you don't pick a really good starting point you will end up spending 30 minutes on this. In class we ended up on xsub11
@bradley98562 жыл бұрын
So the answer was closer to 3 anyway? That's interesting. Good video ty
@kepler41922 жыл бұрын
now do it with euler's method now
@T-zm6ft8 ай бұрын
Excellent video👍
@kiit83372 жыл бұрын
Where is the full lecture for newton method?? Help plz
@MyBroSux242 жыл бұрын
check on 3 blue 1 browns brilliant video where he not only shows how newtons method works but how its applied to resemble a fun pattern.
@Tiwey2 жыл бұрын
Isnt this the differentiating quotient of the normal?
@hanantoaditya41392 жыл бұрын
Is this numerical methods?
@bprpcalculusbasics2 жыл бұрын
Yes
@gatocomcirrose2 жыл бұрын
i mean, if you have to do this by hand it's just better to use wolfram alpha
@AviPars2 жыл бұрын
Thanks
@francocosta12 жыл бұрын
Wolfram rules!
@TristanANain Жыл бұрын
Thank you sir for the lesson but the sad face tho😂
@priyanshrawat4422 жыл бұрын
That pokemon ball mic is cool
@woofy20002 жыл бұрын
π'th
@diniaadil61542 жыл бұрын
fancy way to just say you're third
@moskthinks98012 жыл бұрын
@@diniaadil6154 nah, according to the comments, π = 5
@riendmuskus40502 жыл бұрын
@@moskthinks9801 look at timestamps looks like he was after 3 but before 4 so it checks out Should've been 2.63rd though
@mathiasschembri52072 жыл бұрын
he means π in radians
@robinson59232 жыл бұрын
Ωth
@henrybeenh70762 жыл бұрын
Nothing 's wrong with you
@marmot14342 жыл бұрын
sixth
@Ashmit_17292 жыл бұрын
Make a video on golden ratio Please*10^100000000000
@lukopro36552 жыл бұрын
Fourth
@dublindark79452 жыл бұрын
Second
@gamerpool90002 жыл бұрын
First
@robertveith63832 жыл бұрын
*@blackpenredpen* -- Here is a way without calculus: Set 3x^4 = 8x^3 - 2. Divide each term by 3x^3: x = 8/3 - 2/(3x^3). If you let x_1 = 3, then x_2 ~ 2.6419753, x_3 ~ 2.6305154, ... , x_6 ~ 2.6300203
@josevidal3542 жыл бұрын
Though its correct that You approach the answer,, it doesnt always work. For example, lets Say You want to calculate another root of the same polynomial that is about 0.696889... Using the same method, lets start with a close one: x_0=0.6968, then x_1=0.6961, x_2=0.69044, x_3 = 0.6412, x_4 = 0.1378, x_5 = -251.83, x_6 = 2.66... if You continue You eventually aproach the other root 2.63002... but not the one we wanted. How can You know When is it ok to do this? The answer lies In calculus:: You have to make sure that the root You want to get has an absolute value of it's derivative at the function f(x) = 8/3-2/3x³ less than one.