Approximating The Cos Function Challenge

  Рет қаралды 58,938

SilentALume

SilentALume

Күн бұрын

Пікірлер: 225
@jawadbenbrahim5933
@jawadbenbrahim5933 24 күн бұрын
Now prove that as R→∞, your function becomes the cos function.
@SilentALume
@SilentALume 24 күн бұрын
@@jawadbenbrahim5933 my function as a much smaller infinity then the Taylor series. But infinity is an Infinity, and yes it would make sense for me putting infinity to the equation and calling it complete but I'm also doing it for computer graphics.
@Tabu11211
@Tabu11211 24 күн бұрын
@@SilentALume ngl you still need that x/pi tho
@siddude8021
@siddude8021 22 күн бұрын
​​@@SilentALumethe function you have created converges to the function (1/2 (-2 EllipticTheta(2, 0, 16/e^4) - EllipticTheta(4, 0, 2/e) + (2 EllipticTheta(3, -π x, e^(π^2/(-1 + log(2)))) - EllipticTheta(3, -(π x)/2, e^(π^2/(4 (-1 + log(2)))))) sqrt(π/(1 - log(2)))))/(EllipticTheta(4, 0, 2/e)), this function is different from cos(pi*x) as cos(pi*x) = 0 at x = n + 1/2 for n beeing a integer. While your aproximation is zero at x = n + 1/2 + epsilon where epsilon is the error, epsilon is on the order of 10^-(10), that beeing said it seems the two functions have the same tops and bottoms, basically as R goes to infinity the margin of error goes to 10^(-10)
@andrasfogarasi5014
@andrasfogarasi5014 24 күн бұрын
Welcome back Ramanujan
@BabySisZ_VR
@BabySisZ_VR 9 күн бұрын
💀💀💀
@sNazzy_nazzy
@sNazzy_nazzy 24 күн бұрын
I feel like this video went from "oh huh I see where he's going with this" to "what the fuck" in the span of 0.2 seconds.
@epixel7897
@epixel7897 24 күн бұрын
Wait until he finds out about sin(x+π/2)
@blobthekat
@blobthekat 19 күн бұрын
☠️
@ivanb493
@ivanb493 4 күн бұрын
thats cheating ;p
@TotalTimoTime
@TotalTimoTime 2 күн бұрын
@@ivanb493he‘s using imaginary exponents. Those are automatically trig functions. If you think this suggestion would be cheating then the video is cheated too.
@itsdab2763
@itsdab2763 14 күн бұрын
This man went from watching 3blue1brown to graphing complex equations with custom colors in 3 seconds
@SilentALume
@SilentALume 26 күн бұрын
I was not expecting to get even that close.
@ignaciosavi7739
@ignaciosavi7739 24 күн бұрын
I'll try to make something better
@ignaciosavi7739
@ignaciosavi7739 24 күн бұрын
import matplotlib.pyplot as plt import math def apsin(x): pi = math.pi multy = 1 # in what interval is x in relation to the roots of cos(x) #inty = x / 2 # this gives an approximation of how many roots in front of x . sign = 1 if(math.ceil((x)/pi)%2 == 0): sign = -1 x = (x + pi/2 - (pi *math.ceil((x)/pi))) inty = 1 return sign*(1/(9*pi*pi*pi*pi/16)) * (x+((inty+1)*pi)-pi/2)*(x+((inty)*pi)-pi/2)*(x-((inty)*pi)-pi/2)*(x-((inty)*pi)+pi/2) listy = [] liste= [] print(math.sin(360)) print(apsin(360)) for i in range(1000): print('ap') listy.append(apsin(i)) liste.append(math.sin(i)) print(apsin(i)) print(math.sin(i)) plt.plot(listy) plt.plot(liste) plt.show()
@ignaciosavi7739
@ignaciosavi7739 24 күн бұрын
i made a sin function by accident
@God-gi9iu
@God-gi9iu 24 күн бұрын
Sigma
@MaIarky
@MaIarky 18 күн бұрын
Cosine = e^(ix).real Sine = e^(ix).imag You can also convert this to: i^x.real = cos(2x/pi) i^x.imag = sin(2x/pi)
@kuzhy.
@kuzhy. 23 күн бұрын
2:43 “this video is gonna take about 2π” turns out the video length is just about 6:28 haha
@troubledouble106
@troubledouble106 22 күн бұрын
Lol. Prolly intentional.
@uggupuggu
@uggupuggu 22 күн бұрын
2pi minutes is around 6:17 as a youtube timestamp
@jesp9435
@jesp9435 16 күн бұрын
@@uggupugguwhat?
@xatnu
@xatnu 16 күн бұрын
​@@jesp9435let him cook
@thomasdemilio6164
@thomasdemilio6164 15 күн бұрын
​@@uggupuggu mmmmh....
@T3WI
@T3WI 24 күн бұрын
2:45 where the trivial stuff begins
@creativename.
@creativename. 23 күн бұрын
thanks 🥰🥰🥰
@esp-elagogisch-sozialepart9701
@esp-elagogisch-sozialepart9701 19 күн бұрын
sin(x+π/2) is a decent Approximation if you ask me
@plenus2017
@plenus2017 17 күн бұрын
nah no one asks
@syncradar
@syncradar 12 күн бұрын
I don't want to use sine
@jamie31415
@jamie31415 12 күн бұрын
sin(x-π/2) = -cos(x), not cos(x)
@EnricoRodolico
@EnricoRodolico 13 күн бұрын
You are implicitly using e^ix, which itself encodes the desired results from Euler's formula.
@CarlosRoxo
@CarlosRoxo 11 күн бұрын
I thought so too, but 'i' is not being used as the imaginary unit. It comes from the summation.
@BaukBauk9491
@BaukBauk9491 24 күн бұрын
I think part of the reason why the quadratic in the exponent helped in making the cos function approximation is because of the jacobi theta function. Basically the third order jacobi theta function is θ₃(z, q) = Σ[n=-∞,∞](q^(n²) * e^(2niz)). When z = 0, the imaginary part (e^(2niz)) disappears, so we get θ₃(0, q) = Σ[n=-∞,∞](q^(n²))., splitting this into two sums θ₃(0, q) = q^(0²) + Σ[n=1,∞](q^(n²)) +Σ[n=-1,-∞](q^(n²)) = 1 + Σ[n=1,∞](q^(n²)) +Σ[n=-1,-∞](q^(n²)), notice by symmetry of the sum ((-n)² = n²), Σ[n=1,∞](q^(n²)) = Σ[n=-1,-∞](q^(n²)), therefore we have θ₃(0, q) = 2*Σ[n=1,∞](q^(n²)) + 1, therefore Σ[n=1,∞](q^(n²)) = (θ₃(0, q) - 1)/2. Then for a lot of these sums that appear we can just express the sum in terms of the θ function. By substitution and rearranging we can express many if not all the sum terms in terms of the theta function. The jacobi θ function is essentially an elliptic analogue of the exponential and does exhibit quasi-double periodicity, basically it means that the periodicity goes out to two dimensions and only roughly follows the periodic nature so f(z+u) and f(z+v) may not equal f(z) exactly (for this u and v are linearly independent), but there still follows a trend. Though because the imaginary part is removed it is only singly quasi-periodic hence yielding the cos approximation. Sorry if I made any mistakes make sure to tell me. en.wikipedia.org/wiki/Doubly_periodic_function mathworld.wolfram.com/JacobiThetaFunctions.html en.wikipedia.org/wiki/Quasiperiodicity
@John-cl8iv2
@John-cl8iv2 23 күн бұрын
I literally just learned in my math class yesterday lol
@BaukBauk9491
@BaukBauk9491 23 күн бұрын
@@John-cl8iv2 Oh cool what class is that?
@John-cl8iv2
@John-cl8iv2 23 күн бұрын
@@BaukBauk9491 Wait never min I learned a Jacobian in calc 3
@thespiciestmeatball
@thespiciestmeatball 18 күн бұрын
That was a nice digestible explanation. Well done
@linuxnoodle8682
@linuxnoodle8682 16 күн бұрын
@@BaukBauk9491 you learn about theta functions in complex analysis right?
@vaycoo
@vaycoo 24 күн бұрын
cosinus truly was the euqations we made along the way
@gamerboy7224
@gamerboy7224 24 күн бұрын
Wait until bro discovers taylor series 💀💀💀
@zakariachouhou1280
@zakariachouhou1280 24 күн бұрын
hahah literally what i thought
@raepiste8354
@raepiste8354 24 күн бұрын
Dumbass he literally said it in the beginning
@Tabu11211
@Tabu11211 23 күн бұрын
True but just think about how the numbers involved here don't blow up. This can produce an amazing aproximation with as little as 6 terms to infinity with wrapping.
@gamerboy7224
@gamerboy7224 23 күн бұрын
@@Tabu11211 6 terms only makes this approximation valid for around |x|
@Tabu11211
@Tabu11211 23 күн бұрын
@@gamerboy7224 please do because I might be missing something. What I did to extend it was this: (x - (2pi × floor(x/(2pi)))/pi. Replace x with that and it will use the single cycle for the whole domain.
@TheBoeingCompany-h9z
@TheBoeingCompany-h9z 23 күн бұрын
Bro went from "sooo so close" to an entire mathematic documents that exist
@yariklukianenko4046
@yariklukianenko4046 8 күн бұрын
after you zoomed out at 0:12 ... i instantly went y=0 will do xD
@unflexian
@unflexian 23 күн бұрын
4:36 bro the music is pi!!! that's how i memorize it so i recognized immediately, this is awesome!
@eos_rf
@eos_rf 24 күн бұрын
unbelievable work. im to dumb to understand the process but looks like you made a hard work on this one 🔥🔥🔥
@ZephRanAway
@ZephRanAway 8 күн бұрын
close enough, welcome back Ramanujan
@GavinSpitz
@GavinSpitz 24 күн бұрын
YOU FINALLY GOT A VIDEO THAT WENT SEMI VIRAL YESSSS
@ChaineekToaster
@ChaineekToaster 26 күн бұрын
Absolute cinema
@HarpanW
@HarpanW 24 күн бұрын
Obviously, very trivial stuff really
@toblobs
@toblobs 24 күн бұрын
I was thinking this might have applications to like work out cos quickly without a calc until I saw the final equation XD it feels like a taylor expansion anyways but in the most roundabout way possible
@faded_ace5144
@faded_ace5144 8 күн бұрын
Man was I a fool to think that when I clicked on this video it was gonna be about anything I understand.
@landsgevaer
@landsgevaer 15 күн бұрын
Instead of adding parabolas in the beginning, you could multiply them y = (1-(x/0.5pi)²)*(1-(x/1.5pi)²)*.. and that will be exact as you add infinite factors...
@dproscripts1811
@dproscripts1811 15 күн бұрын
Great work here! To me, it seems that you've derived a quirky Fourier-Poisson approximation with a mainly hyperbolic cosine approximation. I think one of the more concrete places to start would be the complex exponential definition of trigonometry, and approximate that, instead of doing visual approximation. Overall, great job though!
@luigav5663
@luigav5663 24 күн бұрын
I have no clue how you did anything, but this is the type of smart I aspire to be
@lowenheim
@lowenheim 23 күн бұрын
another video with some more explanation of the process/your thinking would be awesome!
@origimed5162
@origimed5162 14 күн бұрын
Bro just bruteforce the taylor series
@lucastornado9496
@lucastornado9496 7 күн бұрын
no. the taylor series is much less efficient than this
@Tabu11211
@Tabu11211 24 күн бұрын
Rung the bell. Love this exploratory chaos.
@YOGURT1
@YOGURT1 5 күн бұрын
hey! great vid, just want to ask what is the program you are using to annotate/draw and make text boxes during the timelapse? Thank you.
@James2210
@James2210 13 күн бұрын
In desmos, it's really easy to get an approximation of the cosine function: cos(x)
@lucastornado9496
@lucastornado9496 7 күн бұрын
your last term can just be simplified as "R" you don't need the sumation of 1 from 1 to R
@0679-Janitza
@0679-Janitza 24 күн бұрын
Very nice!!
@erez2417
@erez2417 14 күн бұрын
bro forgot that adding parabolas gives you back a parabola
@Superhirn
@Superhirn 24 күн бұрын
well done!
@ClementinesmWTF
@ClementinesmWTF 24 күн бұрын
You might have just accidentally created an actual expansion of cos, especially with using e in your constant (cos(x) = (exp(ix)+exp(-ix))/2 after all). Also, the second sum of 1 from 1 to R is just equal to R, the sum is unnecessary.
@SilentALume
@SilentALume 24 күн бұрын
Its because I wanted to be a whole number
@xxd4rk_f1ngerxx89
@xxd4rk_f1ngerxx89 24 күн бұрын
Then the floor function might be your go-to ig
@SilentGamer._
@SilentGamer._ 23 күн бұрын
@@SilentALume you can make the slider go up by 1s
@ClementinesmWTF
@ClementinesmWTF 15 күн бұрын
@@SilentALume use the “step” option when you get into the slider range editor and make it 1 is what the above meant.
@yuyuyu0201
@yuyuyu0201 23 күн бұрын
Truly remarkable 👏🏻
@HejHejda-hh3wl
@HejHejda-hh3wl 21 күн бұрын
Taylor series: Really bro?
@TheOddPolymath
@TheOddPolymath 22 күн бұрын
Subscribed just because of this xD
@transcendenceistaken
@transcendenceistaken 24 күн бұрын
The design of the cosmos (simplified)
@Houshalter
@Houshalter 24 күн бұрын
Divide the input by 2pi and take the remainder. Then you only need to approximate that little range from 0 to 2pi, and every other input will work too. It's what computers actually do when they calculate these functions. It's called modular division and range reduction, and it's used everywhere. You can actually do more than 2pi because between 0 and pi is symmetrical to the part between pi and 2pi. And between 0 and pi/2 is also symmetrical to the part between pi/2 and pi. That leaves you with a tiny little piece of curve. And if you can approximate it, you get the rest of the values everywhere else. I tried a quadratic and got -0.35*x^2 -0.1*x -1. Looks pretty close by eye. I'm sure it's possible to do infinitely better of course. Computers can break it up into many segments, with lookup tables for the best fitting polynomial for each segment. You can do even better than that, but lookup tables and polynomials are very fast to compute.
@lalityt07
@lalityt07 14 күн бұрын
Thats impressive and also genius
@lillegitimate
@lillegitimate 23 күн бұрын
2:44 this is when shit gets serious u should do some exploration on y=sqrt(24x+1) there are beautiful patterns in the primes of the function.
@infrieser
@infrieser 22 күн бұрын
Ok this is cool, but by using the exponential function to approximate a trigonometric function (cosine), aren't you effectively approximating a trigonometric function with a trigonometric function? Since cos(x)=(1/2)(e^(ix)+e^-(ix)) and your equation looks oddly similar, in the sense that it is in the form of (the sum of) (e^f(x) - e^g(x))/c + some error, where the error decreases as I increases. I don't feel like attempting to prove it, but this looks like some sort of taylor expansion of Euler's formula. I might be wrong of course.
@hugurs2396
@hugurs2396 7 күн бұрын
from math import pi def cos_approximations(x): R=10 total=0 e=2.71828182846 D=e/2 for n in range(1,R+1): d1=-D**(-(x/pi+1-2*n)**2) d2=D**(-(-x/pi+1-2*n)**2) d3=2*D**(-(2*n-1)**2) denom=0 for i in range(1,R+1): NUM=D**(8*i-4)+1-2*D**(4*i-1) DENOM=2*D**(4*i*i) denom+=NUM/DENOM total+=(d1-d2+d3)/denom+1/R return total print(cos_approximations(1)) #--> 0.5403023059153995 translating bros formula in python code 💀
@hugurs2396
@hugurs2396 6 күн бұрын
also, this is what the original cos sin functions look like in python code: from math import pi, factorial def cos(x): x=x%(2*pi) total=0 for n in range(10): total+=((-1)**n * (x**(2*n)))/(factorial(2*n)) return total def sin(x): x=x%(2*pi) total=0 for n in range(10): total+=((-1)**n * (x**(2*n+1)))/factorial(2*n+1) return total
@mhm6421
@mhm6421 22 күн бұрын
4:55 You never needed pi to go over the circle though...
@plane9182
@plane9182 23 күн бұрын
One thing i made to approximate cosine with fast computationally is. This works because its fitted to the first quartile range of a cosine function it's accurate to 0.1% a = mod(x,1)-0.5 c = mod(x,2)-a-1 b = a^2(4.897-3.588*a^2)-1 Then graph 2b*c
@sheepcommander_
@sheepcommander_ 15 күн бұрын
huh
@badamson
@badamson 12 күн бұрын
the (D^ix + D^-ix) /2 type stuff you have going on in there is literally just the definition of cos for D=e. its not exactly what you have but something like that is going on there
@Cool_Bungle
@Cool_Bungle 24 күн бұрын
The co-sine function
@acuriousmind6217
@acuriousmind6217 10 күн бұрын
"tHe cOS fUnCtiOn" it sent vibrations down my spine
@Blockitjames
@Blockitjames 22 күн бұрын
bros video actually blew up
@coolcarl2232
@coolcarl2232 22 күн бұрын
this is insane
@TerjeMathisen
@TerjeMathisen 21 күн бұрын
It seemed quite obvious that what you was actually doing was to generate an alternative (and much more complicated) way to express the Taylor series? I clicked on this video expecting to see a fast approximation, useful for things like games/computer graphics, and in the beginning, this seemed like what you were doing, but then wham! 🙂
@mihaleben6051
@mihaleben6051 15 күн бұрын
good luck. i couldnt even find out the sin function
@Elec-citrus
@Elec-citrus 15 күн бұрын
2:48 Yoo, is that the fibonacci music?
@Waterlord2.0
@Waterlord2.0 17 күн бұрын
Fun desmos tip is you can make functions like T(x. y, y) = x * y * u Or without the static-like function x1 = 2 y1 = 5 u = 4 T = x1 * y1 * u
@richielickie
@richielickie 20 күн бұрын
as people probably already said. the cos function is very closely related to the exponential function. And you probably made the vanishing part of the gaussian go to zero with the limits
@koalakid3609
@koalakid3609 24 күн бұрын
"if R goes to infinity what is D?"- SilentALume
13 күн бұрын
instead of writing the sum of 1 for "I" that goes from 1 to R (in the denominator of the last term), you could've just written R
@watip1234
@watip1234 5 күн бұрын
also another interesting way to do this kind of thing is with the bell curve. i may be wrong am an engineer student
@antoine35210
@antoine35210 6 күн бұрын
Just use taylor’s formula ?
@DaMonster
@DaMonster 22 күн бұрын
Are you familiar with CORDIC? It is much faster on a computer than this series, even though it is a very cool series!
@yaruzai6268
@yaruzai6268 9 күн бұрын
Whats the song called? Cant find it with Shazam
@DJT_2024_
@DJT_2024_ 24 күн бұрын
Good job
@SilentALume
@SilentALume 23 күн бұрын
Hi Richard
@ilovejesusandilovegod8803
@ilovejesusandilovegod8803 17 күн бұрын
Here's a fun question: How can you prove your function is similar to cos(x) without desmos? 🙂
@周品宏-o7w
@周品宏-o7w 22 күн бұрын
1:52 Bell-shaped function en.wikipedia.org/wiki/Bell-shaped_function
@Curryocity
@Curryocity 24 күн бұрын
that wasn’t obvious for me
@andrewzhang8512
@andrewzhang8512 24 күн бұрын
Didn't expect to see you here
@mihaleben6051
@mihaleben6051 15 күн бұрын
bro was DESPERATE
@TotalTimoTime
@TotalTimoTime 2 күн бұрын
If youre raising e to imaginary powers then youre no longer approximating cos. By eulers identity we can derive cosine as exactly equal to: cos(x) = (e^ix + e^-ix)/2 So using complex exponents is kinda cheating
@jerpidude8416
@jerpidude8416 16 күн бұрын
approximate it with a forrier series
@abehankens7456
@abehankens7456 10 күн бұрын
wait until this guy finds out about taylor series
@MAHERALISHAH-r7q
@MAHERALISHAH-r7q 23 күн бұрын
Hay man this is really amazing. I actually have an interesting proposition for you. So I have this idea on how to find the inverse of y = x +sinx , but it requires me to replace one function with a different function having the same graph at one step. And the idea isn't about replacing the function at the start too. I cant explain it here. Maybe the idea is good maybe its not, I think it needs some work so I wanna share it with you. Is there some way I could get in contact with you? If this does work by some miracle I think we would be closer to solving the Kepler equation. Its atleast worth a shot.
@SilentALume
@SilentALume 20 күн бұрын
If you want to contact me you can go to discord and put this "SilentALume" in discord so you can dm me and we can get a call.
@SilverGoldYT
@SilverGoldYT 21 күн бұрын
You can't just use pi as a unit for determining your video lengths 😭😭😭😭
@3ddruck410
@3ddruck410 12 күн бұрын
U must me genius af
@Ноунеймбезгалочки-м7ч
@Ноунеймбезгалочки-м7ч 8 күн бұрын
1-mod(x,2π)³/6+mod(x,2π)⁵/120-mod(x,2π)⁷/5040 would probably be better
@philipp3761
@philipp3761 Күн бұрын
If R is 2, what will it become?
@deleted-something
@deleted-something 6 сағат бұрын
tell me someone who doesn't love the sigma function
@dIancaster
@dIancaster 24 күн бұрын
all I need to approximate the sin function is to pull up to the crib w some baddies. The whole function be sinning.
@rohansthill6224
@rohansthill6224 12 күн бұрын
Radial basis functions?
@sapito169
@sapito169 13 сағат бұрын
just truncate the tailor expansion XD
@blackholegamer9
@blackholegamer9 16 күн бұрын
'use the long method'
@programmingpi314
@programmingpi314 24 күн бұрын
Why do you have the sum from I=1 to R of 1? That is just R.
@crafted1046
@crafted1046 24 күн бұрын
This is true mathematics, bravo
@sovenok-hacker
@sovenok-hacker 13 күн бұрын
Maclaurin and Taylor: 💀
@Ential
@Ential 13 күн бұрын
Pi song in the background :sob:
@samasamasamasamas
@samasamasamasamas 23 сағат бұрын
D=e/2 isn’t doing anything special, you can use any value of D>1
@atom1kcreeper605
@atom1kcreeper605 3 күн бұрын
This is what i do for fun
@ongopom
@ongopom 23 күн бұрын
good shit
@Darisiabgal7573
@Darisiabgal7573 17 күн бұрын
So, there’s another way of doing this. So cos X in degrees is SQRT(1- sin^2 X) Can we deduce the sin X, no we can’t however we know the sin X = chord 2X/2 And we can derive the chord of X rather easily. So for any circle of radius 1 the chord of 180° = 2 and the chord of 60° = 1. As it turns out also the chord of 108° is the magic number. This gives the sine of 54°. This flips to give the sine of 36° as cosine of 54°. Which then gives the chord of 72°. These three components can be used to calculate the sin of every angle between 0 and 90° at a spacing of 1.5° again to the precision of whatever device you are using. In fact this is an artificial degree limitation we put on the chord. However we can continue to define a circle (sin, cos) at 0.75°, 0.375° and so on intervals. As we do this we can define a circle to the point where cos = 1 for the smallest degreed angle above zero in the Markov chain. For 8 digit resolution it’s about 13 iterations. So let’s think about this mathematically. If we halve say 180° -> 90° and so on until we get to the point that the bisectors of 2x = 1 and x = 1, a x° very small angle, then we can argue that the function in chord x between 2x and x is indistinguishable from a strait line. So let’s say we wanted to know the chord of 140.25 degrees. Well first step is counter intuitive but we find our range of computational linearity. On this device, an IPad that is achieved at an angle between 0.00000067055225372315° and its double. Next we find 140.25 /90 = 1.55833333333333. Then multiply the two to get 0.00000104494392871857° on this particular device. And so at this point, having done no trigonometry at all we can use a Markov chain to estimate the sin of 70°. We need one other thing which brings the trig back into the equation, that is pi/180°. Chord X = X * pi/180° when X is below 2E-6°. Our formula is Chord 2x = 2 * Chord * Bisector X The bisector X = SQRT(1 - chord^2 x/4) Let’s see what happens. The result of the Markov chain is Estimate of 70.125. cos° = 0.339969239730994 sin° 0.940436556093355 Computer value . cos° = 0.339969239730981 sin° 0.940436556093355 It should be noted that the angle returned was 140.250000000002 This was not optimized and I probably could get a more precise estimate if I assumed that the sin x was linear for larger values of X. In addition if we asked the basic question, what is the precision of a graph of say .10 meter in radius is at best 10 microns. So the error in this case tolerated is 10E-5, in other words I have 10 magnitudes more precision than required to complete the problem. I should note that I am not inventing new math here. The plimpton 322 triples essentially defined points on the outside of a circle around 1800 BCE, about the same time the square root of 2 was formalized. With Pythagoras, our not so friendly cultic mathematician, we could define a circle in terms of 180, 165, 150, 135, 120, 105, 90, 75, 60, 45, 30, 15°, and 0° rather easily. With ptolemies quadrilaterals we can get this to every third angle in terms of chords. We can mathematically readily estimate the chord of 40° which in all its permutations gives chords to 1° and signs and cosines to 1/2 degree. Which is usually enough. There is something I forgot to mention. We can also plot direct onto the graph using chord if we don’t want to use sines or cosines as an intermediate.
@Dari.
@Dari. 24 күн бұрын
Just use Sin
@thomasbeaumont3668
@thomasbeaumont3668 21 күн бұрын
plugging this instead of trig functions, to avoid trig in pre calc
@SilentALume
@SilentALume 21 күн бұрын
@@thomasbeaumont3668 lol
@moocatmeow
@moocatmeow 21 күн бұрын
personally i like real(i^(x/π/2)) as an approximation of cos
@kellymoses8566
@kellymoses8566 15 күн бұрын
sine is abbreviated to sin but not pronounced like sin. It rhymes with pine
@bluecherry586
@bluecherry586 24 күн бұрын
Is it exactly the same as cos(x)?
@SilentALume
@SilentALume 24 күн бұрын
@@bluecherry586 its off by a very small decimal
@SilentALume
@SilentALume 24 күн бұрын
@@bluecherry586 but it might be possible
@SilentALume
@SilentALume 24 күн бұрын
@@bluecherry586 it's just when R is to infinity I would have to find the best number for D to = the cos function
@noway2831
@noway2831 23 күн бұрын
Just wondering -- why use sum_{I=1}^R 1 when you could just have written R?
@CRnk153
@CRnk153 3 күн бұрын
so what's your class in critical legends
@MrRyanroberson1
@MrRyanroberson1 23 күн бұрын
Subtract them and multiply that difference by 1000 to see the micro error
@AnEnderNon
@AnEnderNon 22 күн бұрын
he zoomed in
@NStripleseven
@NStripleseven 23 күн бұрын
Going around a circle using e
@bikersbratts
@bikersbratts 26 күн бұрын
cinema
@Conflict-v8w
@Conflict-v8w 19 сағат бұрын
2:44 the video is in fact 2 pi
@LemonadetvYT
@LemonadetvYT 23 күн бұрын
bro has not heard of a taylor series before
@adamfurlong4979
@adamfurlong4979 23 күн бұрын
0:28
@plenus2017
@plenus2017 17 күн бұрын
are you swiftie?
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 947 М.
Disrespect or Respect 💔❤️
00:27
Thiago Productions
Рет қаралды 43 МЛН
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 219 МЛН
All possible pythagorean triples, visualized
16:58
3Blue1Brown
Рет қаралды 3,8 МЛН
How I made Math: Final Boss
16:31
Jake Walker
Рет қаралды 391 М.
polygon function
1:02
elaina
Рет қаралды 24 М.
Kepler’s Impossible Equation
22:42
Welch Labs
Рет қаралды 208 М.
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,2 МЛН
Why π is in the normal distribution (beyond integral tricks)
24:46
3Blue1Brown
Рет қаралды 1,6 МЛН
Turning set theory into the world's worst conlang
20:39
Random Andgit
Рет қаралды 49 М.
Olympiad level counting  (Generating functions)
34:36
3Blue1Brown
Рет қаралды 1,9 МЛН
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Disrespect or Respect 💔❤️
00:27
Thiago Productions
Рет қаралды 43 МЛН