What is Stationarity

  Рет қаралды 82,645

Aric LaBarr

Aric LaBarr

Күн бұрын

Пікірлер: 85
@benwolfrum5890
@benwolfrum5890 3 жыл бұрын
I cannot even express how grateful I am for these videos.. they're so clear! Amazing job
@fortissimo4382
@fortissimo4382 3 жыл бұрын
Better than my professor's 2-hour lecture lol Why is this channel so underrated?
@siyuhou1957
@siyuhou1957 4 жыл бұрын
So far the best TS tutorials I have watched. Please keep it coming :)
@AnuragTiwari01
@AnuragTiwari01 4 жыл бұрын
Your videos have concept clarity far better than many prominent online study websites.
@pjakobsen
@pjakobsen 4 жыл бұрын
Best LR vids on KZbin, and that's saying a lot because there are many! Thank You :)
@AricLaBarr
@AricLaBarr 4 жыл бұрын
Wow, thanks! Glad you liked them!
@markwilliams1555
@markwilliams1555 4 жыл бұрын
What a wonderful video. Much better explanation that I could have managed! Will definitely be recommending this series.
@trav3ll3r
@trav3ll3r 3 жыл бұрын
The way you explain things is amazing! Thank you for these videos!
@kravi88
@kravi88 4 жыл бұрын
Your videos break down concepts in such a meaningful way! I hope you keep posting more!
@manjeetkuthe1717
@manjeetkuthe1717 Жыл бұрын
again i am very very grateful to you , delivering so great content in such a short time , hats off
@gabrielaknapik7239
@gabrielaknapik7239 4 жыл бұрын
I wish my lectures would look like that! Thanks a lot
@arulhasbi6947
@arulhasbi6947 4 жыл бұрын
Really thank you for the video 🙏 simple and best explanation about stationary so far. It really helped me getting started for forecasting.
@AricLaBarr
@AricLaBarr 4 жыл бұрын
Glad it was helpful!
@domenicapincay8313
@domenicapincay8313 2 жыл бұрын
THAT WAS A GREAT EXPLANATION OF THE THEORY IN FEW MINUTES. THANKS ❤️❤️❤️❤️
@IrakliKavtaradzepsyche
@IrakliKavtaradzepsyche 3 жыл бұрын
You might be the only nerd with a good sense of humour. also thank you for the explanation
@jeffz7310
@jeffz7310 2 жыл бұрын
Best statistics video ever
@pabloluce2021
@pabloluce2021 4 жыл бұрын
The Best Tutorial!!!
@marktwain5315
@marktwain5315 3 жыл бұрын
You are a brilliant teacher.
@hellod2831
@hellod2831 4 жыл бұрын
Great video, help me understand the stationary concept1
@kvs123100
@kvs123100 3 жыл бұрын
Same means exactly equal or similar as we put in hypothesis testing i.e. statistically significant?
@AricLaBarr
@AricLaBarr 3 жыл бұрын
Statistically!
@StupidGoodProduction
@StupidGoodProduction Жыл бұрын
What determines the window size you use? It it a standard number of timesteps? e.g. You could choose a window for the seasonal data that would make it stationary.
@AricLaBarr
@AricLaBarr Жыл бұрын
The theory would be that any size window should hold for stationarity. Now I would push back that you could select a window to make seasonal data stationary. This is because even if you picked a window that was the exact size of a season, you would lose the stationarity the moment you move this window one time period into the future and lose the season. For example, it isn't every 12 time periods, but a window of 12 time periods from every time point.
@StupidGoodProduction
@StupidGoodProduction Жыл бұрын
@@AricLaBarr That makes sense. Thank you for this excellent series. I was thinking of the seasonal data like a sine function with the window as one period. Shifting the window in time would be like a phase shift, which would maintain the same "distribution".
@bouchekouamoez4345
@bouchekouamoez4345 2 жыл бұрын
Quick & clear ! thank you for the explanation.
@AricLaBarr
@AricLaBarr 2 жыл бұрын
Thank you!
@Geopkoch
@Geopkoch 5 жыл бұрын
Great stuff, keep it up!
@AricLaBarr
@AricLaBarr 4 жыл бұрын
Thank you! Glad you liked it!
@petrusdimase1520
@petrusdimase1520 3 жыл бұрын
Awesome explanation
@soumyabrata111
@soumyabrata111 2 жыл бұрын
At last, understood. Thanks Sir
@ghinairfan511
@ghinairfan511 3 жыл бұрын
What do u mean by location in time??
@AricLaBarr
@AricLaBarr 3 жыл бұрын
Literally where you are in the x-axis which is time itself!
@michalkiwanuka938
@michalkiwanuka938 7 ай бұрын
Just some clarifications. When you say "model the lack of consistency in variance", do you mean model the variance in a consistent way? When you say they are Lazy, do you mean they are using a method that has statistically incorrect properties for the sake of simplicity?
@AricLaBarr
@AricLaBarr 7 ай бұрын
Happy to help! I mean that there are models to actually model variance, especially when it is changing over time. The methods aren't statistically incorrect in terms of the mean and will follow everything they need to predict the means (averages) well still.
@cerenabay4608
@cerenabay4608 2 жыл бұрын
Hello, thank very much for great video! Could you please help me to get the datasets used in this presentation? Thanks🙂
@AricLaBarr
@AricLaBarr 2 жыл бұрын
Most of the datasets are ones I created myself to get the right pattern for the slides!
@floriankramer5835
@floriankramer5835 4 жыл бұрын
Great explanation, thank you!
@hasnattahir7393
@hasnattahir7393 4 жыл бұрын
Thanks for the video, it's just the way I like!
@AricLaBarr
@AricLaBarr 4 жыл бұрын
Thank you! Glad you liked it!
@mzhr72
@mzhr72 Жыл бұрын
Nice video, helped clear my concept.
@AricLaBarr
@AricLaBarr Жыл бұрын
Glad it helped!
@subhadipmukherjee575
@subhadipmukherjee575 4 жыл бұрын
very easily explained by you sir...thanks ... but the variance stationery part is not explained...
@bryanshalloway8915
@bryanshalloway8915 5 жыл бұрын
Excellent Video!
@AricLaBarr
@AricLaBarr 4 жыл бұрын
Thank you! Glad you liked it!
@monikgupta6687
@monikgupta6687 3 жыл бұрын
loved it!!
@junbinlin6764
@junbinlin6764 2 жыл бұрын
what is the distribution in time series analysis ?
@AricLaBarr
@AricLaBarr 2 жыл бұрын
What distribution are you looking for? Distribution of residuals from a model? Distribution of the statistical tests? There are many distributions :-)
@TheBlueFluidBreathe
@TheBlueFluidBreathe 5 ай бұрын
Bro God bless you!
@amra.haleem5175
@amra.haleem5175 2 жыл бұрын
Dear Prof. Aric; won't differencing results in totally unrelated new values?
@AricLaBarr
@AricLaBarr 2 жыл бұрын
That is actually the fun part - it depends! Yes, the original correlations you saw in your data will be most likely different. However, those correlations were probably impacted by those trends and seasonality in a way that makes ARIMA models not work well since in the long run, those models always revert to a constant mean. So in a way, the differencing will reveal more of the actually modellable (by ARIMA standards) correlations in your data!
@nayabkhan6742
@nayabkhan6742 2 жыл бұрын
I would like you to give some real life examples of stationarity for my clarification on the topic . Still confused what is stationarity
@AricLaBarr
@AricLaBarr 2 жыл бұрын
Stationary data is (mostly) data that doesn't trend or have seasonality. Think of something like the year over year percentage change in population for a country. Hope this helps!
@kafuu1
@kafuu1 7 ай бұрын
This video is amazing
@JL-hz5li
@JL-hz5li Жыл бұрын
Really amazing
@ihabbashaagha8549
@ihabbashaagha8549 2 жыл бұрын
Amazing explanation!
@AricLaBarr
@AricLaBarr 2 жыл бұрын
Thank you!
@emmanuelowoicho5472
@emmanuelowoicho5472 17 сағат бұрын
If the data sets don't give staionality, can't you just increase the time frame(s)
@muhanadkamil7335
@muhanadkamil7335 2 жыл бұрын
How can I do the analysis??
@AricLaBarr
@AricLaBarr 2 жыл бұрын
There are a lot of great options in open source software like Python or R!
@arnonym5995
@arnonym5995 11 ай бұрын
A severe misconception: ARCH / GARCH models are not used to model a change in the unconditional variance and are therefore not used for non-stationary series. Short volatility clusters as shown in your example series do not violate the idea of (weak) stationarity. Such volatility clusters are caused by a changing conditional variance, which can be modelled using ARCH (autoregressive conditional heteroskedasticity) and GARCH (generalized ARCH) models. Look it up. There are even commonly known conditions for the stationarity of ARCH / GARCH processes. Think about it like this: when we consider stationarity in the mean, we do not expect a time series to follow a straight line at a constant value. No, it is fine that it diverges from the overall mean before it returns to it within a short amount of time. Similarly, for stationarity in the variance, it is fine if the variation in the series diverges for a couple of observations, if the level of variation then returns to the overall level of variation.
@nickkoprowicz4831
@nickkoprowicz4831 4 жыл бұрын
Awesome :)
@dalkeiththomas9352
@dalkeiththomas9352 Жыл бұрын
Wow awesome
@MikeSieko17
@MikeSieko17 Жыл бұрын
I double differenced and got constant variance explain please
@AricLaBarr
@AricLaBarr 10 ай бұрын
That is probably a result of over-differencing! If you take too many differences you could introduce even more problems into your data. You should only difference if you have a trend, season, or unit root.
@abarrachina
@abarrachina Жыл бұрын
Love it, thanks
@adefanegan7332
@adefanegan7332 4 жыл бұрын
Amen
@HazemAzim
@HazemAzim 2 жыл бұрын
just super !
@omar4901
@omar4901 4 жыл бұрын
haha love it!
@h.i.sjoevall4213
@h.i.sjoevall4213 Жыл бұрын
Are you sure that seasonality makes a variable non-stationary? It doesn't feel right to me.
@AricLaBarr
@AricLaBarr Жыл бұрын
A lot of people have trouble seeing how seasonal data is non-stationary so you are not alone! Think about it this way. Stationary average means that at any point in time, the series can take (and actually reverts to over the long run) the average. This is actually never the case for seasonal data. Seasonal data only crosses the mean at specific points in the season, not ANY point in the season. The wave of seasonal data makes it impossible for any point in the series to be at the mean. Hope this helps!
@h.i.sjoevall4213
@h.i.sjoevall4213 Жыл бұрын
@@AricLaBarr Thanks! That was an excellent explanation! 🙌
@tombrady7390
@tombrady7390 4 жыл бұрын
you can pat your back sir
@fatimajunejo3960
@fatimajunejo3960 2 жыл бұрын
Amazing
@AricLaBarr
@AricLaBarr 2 жыл бұрын
Thank you!
@robin5453
@robin5453 6 ай бұрын
so clear
@iagomez02
@iagomez02 5 жыл бұрын
:)
@shivibhatia1613
@shivibhatia1613 Жыл бұрын
why cant people on these or any other lectures explain why in the first place a stationary data is needed, they all are talking about have a stationary data but why should we have one
@AricLaBarr
@AricLaBarr Жыл бұрын
It is because of the structure of the models we are using. ARIMA models rely on stationarity because they rely on means reverting. Without stationarity, ARIMA models will have horrible forecasts because they mathematically revert to the mean whether your data does or not.
@enass.muhammed7469
@enass.muhammed7469 Жыл бұрын
IM still having a problem understanding stationary and non stationary 😢
@AricLaBarr
@AricLaBarr Жыл бұрын
The main difference between them is whether you think the process hovers around a specific value. That is mean stationarity. It never gets too far away above or below a specific value.
@farhansarguroh8680
@farhansarguroh8680 Жыл бұрын
Shameless pug?😢
@elenadelonge3987
@elenadelonge3987 3 жыл бұрын
sorry,in my book the strong stationary implies weak stationary,and weak stationary doesn't imply the strong one
@ryanfeeley2407
@ryanfeeley2407 Жыл бұрын
Slight variations in definitions from book to book. You need the two moments to exist for weak stationarity. But most definitions of strong stationarity don't delve into that since they demand equivalence at a deeper level. End result is neither implies the other.
@biscupfoods9382
@biscupfoods9382 Жыл бұрын
Why not just deal with variance with log-return? We use it all the time with random walk models. Also why not give everyone the applied intuitions behind these statistical models, for example one purpose comes all down to isolating the seasonal indices over the overall smoothed trendline to make extrapolations upon a confidence band. I would really hope you've made a short video on that matter - because there's not a single textbook or scholarly article I know that actually has explained it in a way that even kids would understand it
@lisayip4305
@lisayip4305 Жыл бұрын
Differencing and transformation are different. Log transformation is to stationize the variance, you can still have trend and seasonality with transformed data. Differencing is to eliminate trend and seasonality to stationize the mean.
What are Autoregressive (AR) Models
5:01
Aric LaBarr
Рет қаралды 134 М.
What is Time Series Decomposition
4:54
Aric LaBarr
Рет қаралды 60 М.
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 301 М.
Weak Stationarity vs Strong Stationarity
7:34
Justin Eloriaga
Рет қаралды 7 М.
What are ARCH & GARCH Models
5:10
Aric LaBarr
Рет қаралды 45 М.
How autocorrelation works
12:30
Brandon Rohrer
Рет қаралды 268 М.
What are Moving Average (MA) Models
5:01
Aric LaBarr
Рет қаралды 74 М.
Two Effective Algorithms for Time Series Forecasting
14:20
Time Series Talk : Autoregressive Model
8:54
ritvikmath
Рет қаралды 346 М.
What are ARIMA Models
5:07
Aric LaBarr
Рет қаралды 63 М.
How to build ARIMA models in Python for time series forecasting
20:38
Lianne and Justin
Рет қаралды 94 М.
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН