You're a hell of a teacher, thank you sir! I am feeling much more confident for my final exam on Monday
@alexandriak.27883 жыл бұрын
Thank you so much for taking the time to make this video and explain each step thoroughly! Definitely helped me solidify this concept for my finance class! :)
@MizzC6254 жыл бұрын
So easy!!! Thank you for being so detailed, so quickly!!
@papazig9117 жыл бұрын
Awesome video thanks !! My finance textbook didn't even dive into this.
@chococatvega18654 жыл бұрын
Same it is a damn nightmare
@박이레-q7g2 жыл бұрын
Thank you pdaves!! You saved my life and my financial management course!!
@sujatha82673 жыл бұрын
This is so helpful ! Thanks a lot. Seems like my Schweser textbook has completely ignored this.
@aimebelleschansons8 жыл бұрын
Thank you kind sir! It took me a while to find this video, but happy I did :)
@songamanda3764 жыл бұрын
So helpful, you are the greatest
@gulyandarbaratashvili61943 жыл бұрын
Thank you so much for your helpful instruction!
@samuelkarari80413 жыл бұрын
Thanks for teaching you are a genius
@NDaly6 жыл бұрын
Such a simple method, I love it!
@sassinator7462 Жыл бұрын
So we don't have to make the initial investment of $40 negative? I saw this for similar calculations but am not sure when to make CF0 negative
@michaelsisk29823 жыл бұрын
Excellent
@blst47812 жыл бұрын
Shouldn’t CF0 be a negative 40 instead of a positive one since it is the initial investment?
@NotIshan1253 жыл бұрын
just dont forget to put a minus sign on the PV before computing - therefore not attaining a negative answer
@sydyoonworks5 жыл бұрын
why you dont put on BGN mode? Isn't that start from O so it is Annuity Due ?
@jessvschidinma3 жыл бұрын
Honestly very helpful. Thank you!
@JustinQuiksilver3 жыл бұрын
Hi Dave! Can you please tell me if you can use this NPV method if there was semiannual compounding?
@ntimdomfeh19597 жыл бұрын
Thanks sir. You made my life a lot easier
@aarsalomon16 жыл бұрын
What if you're calculating the FV of these uneven cash flows with a different compounding frequency? What if your interest rate was still 10%, but compounded semiannually?
@lukq-dj5 жыл бұрын
Semi-annual compounding means that the interest rate will be compounded every 6 months. So in 1 year interest rate will be compounded twice. In this case you get a 10% annual interest and the number of periods are 3 years. Since the compounding frequency is semi-annual you will have to adjust your annual interest rate to semi-annual as well as the number of periods. 10% / 2 = 5% semi annual int.rate & 3 years * 2 = 6 compounding periods.
@crazy313314 жыл бұрын
Exactly what I needed thank you!
@amorehesham6605 жыл бұрын
can you tell me the way to download that calculation please
@wanda61775 жыл бұрын
great video
@lakeshkhanal254811 ай бұрын
Very Helpful!!
@vishalshaw66135 жыл бұрын
Awesome. Really helpful!!
@monza80812 жыл бұрын
Thank you
@amahcynthia74053 жыл бұрын
Thank you so muchhhhhhh.
@DannyJaraMusic8 жыл бұрын
thanks (Y) very insightful
@MrBenji10597 жыл бұрын
Is this the same as a "MIXED STREAM"????
@mehxlynn7 жыл бұрын
yes
@AliSAyach4 жыл бұрын
thank you so much the video is very useful😘
@handlepending8 жыл бұрын
THANK YOU!
@eliza22476 жыл бұрын
Thanks for the help :D
@JI774696 жыл бұрын
Ummm, why not just do FV = NPV*(1.1)^3 ? I.E. PV accrues 3 years of interest at 10% to get FV.
@ramdeuter10464 жыл бұрын
Thank you :)
@finnnguyen23865 жыл бұрын
Many thanks sir
@franciscojurado86275 жыл бұрын
A saver deposits the following amounts in an account paying a stated annual rate of 4%, compounded semiannually: Year End of Year Deposits ($) 1 --> 4,000 2 --> 8,000 3 --> 7,000 4 --> 10,000 Anyone can help with the different step to compute the future value of the total saver deposit end of year 4?
@quanquan16753 жыл бұрын
Step 1: cf0=0 cf1=0 cf2=4000 cf3=0 cf4=8000 cf5=0 cf6=7000 cf7=0 cf8=10000 hit NPV, enter I=2 CPT NPV (you should get 25,986.14) Step 2 use this NPV as PV: PV = 25,986.14 PMT=0 N=8 I/Y=2 CPT FV now you should get 30,446.91 Hope this helps. Since it's semi annual, you can see it as total of 8 payment, where mid-year is $0 payment.