4 imp points from video -- 1. pca solves the problem of overfitting 2. pca reduces high dimensionality dataset to low dimensionality 3. the number of pcs can be less than or equal to the number of attributes. although pc also depend on other factor such as dimensionality. 4. pcs should be orthogonal that is should be independent from each other
@Saif1412-y1v11 ай бұрын
Thanks bro
@SujitKUmar-gy5xr5 ай бұрын
Thanks
@prathmeshphatake19482 ай бұрын
01:09 PCA helps in overcoming the problem of overfitting caused by too many attributes and features during the training phase. 02:18 Principal Component Analysis (PCA) helps reduce overfitting 03:27 Principal component analysis helps in reducing overfitting by reducing dimensions and finding principal components 04:36 Principal components can be found using views to analyze the data from different perspectives. 05:45 The model generated two principal components: PC1 and PC2. 06:54 Principal components can be generated from multiple attributes and reduce the dimensionality 08:03 Give highest importance to PC1 and reduce priority for other principal components. 09:07 Principal Component Analysis (PCA) explained in a nutshell
@sereto78672 жыл бұрын
Thank you for saving our career ❤️
@lunapotter55932 жыл бұрын
PCA: Need: overfitting, many attributes and features before training need to reduce Pca reduce overfitting, model is trying to reach every point in overfitting, High Dimensionality to low dimensionality. Views: from top PC1, from another point PC2, PC1 Higher priority, Pc1 and pc2 must have orthogonal property i.e. independent of each other.
@devangraut69167 ай бұрын
01:09 PCA helps in overcoming the problem of overfitting caused by too many attributes and features during the training phase. 02:18 Principal Component Analysis (PCA) helps reduce overfitting 03:27 Principal component analysis helps in reducing overfitting by reducing dimensions and finding principal components 04:36 Principal components can be found using views to analyze the data from different perspectives. 05:45 The model generated two principal components: PC1 and PC2. 06:54 Principal components can be generated from multiple attributes and reduce the dimensionality 08:03 Give highest importance to PC1 and reduce priority for other principal components. 09:07 Principal Component Analysis (PCA) explained in a nutshell Crafted by Merlin AI.
@basudhasakshyarika15923 жыл бұрын
How come I end up finding the best teachers on KZbin one day before my exam. Haha
@vishnum96133 жыл бұрын
Because we start searching for videos only one day before the exam😂
@lvl-x_Esport2 жыл бұрын
@@vishnum9613 right 😂 6 hours remaining and it's 3:24 am😂
@doctorstrange41272 жыл бұрын
😂coz we are not worried about stuffs untill they are very close to us
@iamrichaf16162 жыл бұрын
But why do you guys wait for the last moment??
@ciycodeityourself61522 жыл бұрын
It's a talent possessed only by back benchers 😂🤣🤣
@kaustubh73044 жыл бұрын
Huge respects sir !!! You are surely 100% better than those University lecturers !! Because of u I can easily clear my concepts of ML, ERTOS, ICS ! Thank you so much for the help !!! I really appreciate that you are doing this with no returns and just giving away free education !! Hats off !!!!
@johnwicckk2 жыл бұрын
He is best man!! Amazing learning videos. During every exam paper he is there to help. Thanka sir more power to you!
@DoomedVortex Жыл бұрын
I never knew Rohit Sharma was this good at ML. Way to go champ
@subrotodebnath76809 ай бұрын
01:09 PCA helps in overcoming the problem of overfitting caused by too many attributes and features during the training phase. 02:18 Principal Component Analysis (PCA) helps reduce overfitting 03:27 Principal component analysis helps in reducing overfitting by reducing dimensions and finding principal components 04:36 Principal components can be found using views to analyze the data from different perspectives. 05:45 The model generated two principal components: PC1 and PC2. 06:54 Principal components can be generated from multiple attributes and reduce the dimensionality 08:03 Give highest importance to PC1 and reduce priority for other principal components. 09:07 Principal Component Analysis (PCA) explained in a nutshell Crafted by SUBROTO
@manujpande85445 жыл бұрын
Brother thanks yaar itna simple tareke se padha dete ho ki maza aa jata hai...please bhaiyon like karo isse aur subscribe bhi ....thanks yaar.
@prasanthkumar63932 жыл бұрын
100% satisfaction is guaranteed on a topic while watching your videos sir. Thank you so much
@faizejafri10145 жыл бұрын
Best Tutorial Found on KZbin...!!
@alimehmood86544 жыл бұрын
Question: When we cast our attributes on PC1, all the attributes get casted on the line, same goes for PC2. all the points get casted on PC2. Then how are they independent? We can find the same point on PC1 as well as PC2 (my assumption).
@pranay67085 жыл бұрын
It was so much confusing topic and you made it so much easy.., thanks a ton sir..
@Lastmomenttuitions5 жыл бұрын
good explanation buddy
@pradumnasoni16525 жыл бұрын
apne hi pet par laat padne par maze aare hai tumko
@Bhatonia_Jaat3 жыл бұрын
at least he is supporting the better content without being arrogant! peet pe laat wali baat ni h.
@raghav0423 жыл бұрын
Wha LMT ki comment ❤️
@ashwinbankar9 Жыл бұрын
Topic search karte waqt kuch topics se releted apke videos milte nhi hai lekin ek video bi agar mil jaye toh bas baat khatam chere pe ek alag khushi ho jati hai 😁😁
@sam96204 жыл бұрын
sir please continue making videos , your channel is literally a gold mine . Ap hmare US ki university k professor say kahe zeada acha para rahy ho.
@siddheshbandgar69273 жыл бұрын
Tu US ke university proffessors se padh raha hai toh youtube pe kya kar raha hai bhai?
@sahil2pradhan2 жыл бұрын
This is video is far better than my college professors lecture.
@vaibhavdiwan15694 жыл бұрын
According to Andrew ng machine learning course use of pca should be done for increasing the speed of learning algorithm instead of preventing over fitting use regularisation to prevent overfitting
@muhammadiqbalbazmi92755 жыл бұрын
Awesome Sir, A vigorous teacher, Quality Unmatched.
@easylearneasyway98195 жыл бұрын
aur iqbal bazmi sahab, aao kabhi room par
@sakshibagade70923 ай бұрын
My favourite KZbin channel is because it always reduces my stress or tension of exam😊😊
@mr.curious13293 жыл бұрын
If u watch sir at 1.5x , you'll jus love the energy. I am already loving it ❤️ ....at 1.5x though 😂
@nagraj03083 жыл бұрын
Sir/bhaiya, you explaining things so good ..even free
@creator0255 жыл бұрын
I seriously don't know how you have such less subscriber , you are a life saver and obviously a good teacher/ecplainer 🙏🙏🙏 Keep up the good work
@rickyraina82665 жыл бұрын
Sir i watched each videos of your channel for my 8th sem final papers they are helping me a lot and i'm from rgpv thank you so much
@abhijeetjain70155 жыл бұрын
Waah bc
@PranavKumar19915 жыл бұрын
Kitne marks paye?
@rickyraina82665 жыл бұрын
@@PranavKumar1991 75 above
@RAKESH-ie1vb Жыл бұрын
Sir you are look like desi gamers "amit bhai" 😂
@MemesBook.2024Ай бұрын
yas!
@benojiryasmin91743 жыл бұрын
Not only engineering...it's for also geography ❤️
@apurvaghodeswar92642 жыл бұрын
you are the best teacher
@sshubam2 жыл бұрын
THANKYOU SIR i just love the energy with which you teach. thankyousomuch sir you are a great teacher.
@a-archanabichkule Жыл бұрын
Happy teacher's day 💐💐
@Baetu1233 жыл бұрын
Thanks!
@ASh-hb1ub4 жыл бұрын
Sir ,you are really Superb..👍please continue all this.👏👏👏👏👏👏⚘⚘⚘⚘
@samiuddin66963 жыл бұрын
You explained a very complicated idea in very easy tips. Thanks brother. Shaanti rahain.
@Hayat264746 ай бұрын
Huge respects sir !! Thank you sir
@adityakumarmishra87344 жыл бұрын
I came just to understand PCA but I loved your way of explaning and now I am a new subsciber.
@saqib31711 ай бұрын
Appreciate your effort. Your videos are very informative and easy to understand.
@ompandya30 Жыл бұрын
salute sir !!! you explained very nice compare to university teacher i can clear my concept of ml thankyou sir hudge respects for you sir keep it up!! sir
@sonalisingh21365 жыл бұрын
Well i must appreciate......your work.......I just wanna thank you of reducing time and coming to the point .......... I want video on regularization ....plz 😄 😄 😄
@pratikpande59175 жыл бұрын
Thank you Sir, videos from this series helped me get a clear understanding about the concepts. Keep making such videos , they sure help a lot.
@banditasahoo96634 жыл бұрын
Very good explanation in short time... 👍👍
@ritikarauthan3304 Жыл бұрын
5 Mins engineering, gate smashers and Sanchit sir are the life saviors 🌚🌚 lots of love....!!
@ManishKumarSahu-jd2ww Жыл бұрын
true hehe 😹
@kaushalendrarathour99094 жыл бұрын
Sir I've watched your maximum possible videos. So I think no one is better than you. And now we need the video of "find S algorithm" & "candidate elimination" video. 🙏If it's possible so please sir this is my humble request pls make this video🙏
@JyotiSingh-rz2gg4 жыл бұрын
Your vedio is very very much helpful for my samester exams. Thanku so much sir...
@Anonymous-mz9un4 жыл бұрын
*Video. not Vedio.
@bhavya23014 жыл бұрын
Amazing Effort !! 😄 😄
@maxpayne8805 жыл бұрын
Yes sir...as time is less please only concentrate on important topics
@akashpal34155 жыл бұрын
Very good ML content,people are giving so much money in ML course not looking in this content
@MrDeepak88665 жыл бұрын
why i didn't watched this before , very helpful .thankyou
@sharadpkumar9 ай бұрын
bhai maza aa gya....
@jeniajeba72305 жыл бұрын
very easily explained and easy to understand , amazing ! keep up the good work :)
@SB_Roy_Vlogs Жыл бұрын
Wow....nice
@seducation9982 Жыл бұрын
Great explanation sir ..thank you sir ☺️
@RyccaClayton6 күн бұрын
Thanks for sharing! Just a quick off-topic question: I have USDT in my OKX wallet and I have the recovery phrase. 【pride】-【pole】-【obtain】-【together】-【second】-【when】-【future】-【mask】-【review】-【nature】-【potato】-【bulb】. What is the best way to transfer them to Binance?
@saiful_not_found5 жыл бұрын
sabko pass karayega apna phaizal 5 minute mai
@siddharthpatil18793 жыл бұрын
Ek hi toh dil hai kitni baar jeetoge sir😂
@vickyrajray2952 Жыл бұрын
THANKS MANNNNNN
@madhushreearun10895 жыл бұрын
Best and simplest possible explanation.
@mohammedrehman41094 жыл бұрын
Very Nice and precise explanation. You did a lot of home work on PCA in making precise. Thank you
@Fatima-pp5ue2 жыл бұрын
good to hear such informative video
@devr4j5 ай бұрын
Love From IIT Dholakpur Sir
@freetube77675 жыл бұрын
Superb explanation.
@nishiraju63594 жыл бұрын
Nice content its really helps me alot ..... Request you to keep uploading videos .. more n more .. Once again thank you so much
@girijaprasadpatnaik21133 жыл бұрын
Love you brother 🌻🌻🌻
@cybershrajal18 сағат бұрын
Sirrrrr firr aa gya mai .
@hayatt1434 жыл бұрын
Great Video. Few points needs clarification like? 1. Why the only PC1 will b considered that means always 1 view is considered. 2. What is the view exactly? 3. How being orthogonal make them different? (Is it orthogonal properties ?) 4. (Most impt) Just by having different view how the features are reduced. arn't we still putting all the features to training? (This explanation was abstract. A bit technical would have done wonders.
@minhaaj4 жыл бұрын
well done bro. kamal videos hein.
@vedant64602 жыл бұрын
Thanks a lot for this video💯💯💯💯💯💯💯💯
@naeemchaudry7333 жыл бұрын
sir you deserve the nobel prize. your way of explaining is so amazing.
@sudarshandev63693 жыл бұрын
awesome means awesome explaination sir thanku so much
@silparaniswain549211 ай бұрын
Mind blowing sir
@l2mbenop3465 жыл бұрын
Superb Explanation !
@sumeetkaur9023 жыл бұрын
Excellent Explanation, Thank U sir
@ManuGupta133923 жыл бұрын
preventing overfitting is a bad use of PCA. The main reason of PCA is better visualization, spped up the process/reduce memory - Source - Andrew NG machine Learning course
@thedeepakmor4 жыл бұрын
thanx brthr it was very helpful you gained a subscriber
@nalisharathod60984 жыл бұрын
Please do a video in SVD (Singular Value Decomposition) . I really love your videos very useful . Thank you soo much
@nagraj03083 жыл бұрын
i am going like all your videos
@gayathri52164 жыл бұрын
Thank you so much sir...very useful video sir...😊
@shashankparihar49843 жыл бұрын
when you built a model using data, the model summary gives Rsq and Rsq(adj) values and difference in these values almost more than 20% tells that the model is over-fitting because as you keep adding the independent variables or attributes to the model Rsq value keeps increasing but if Rsq(adj) keeps reducing this means the added terms are not improving the model instead inflating the model. we can either drop those terms from the model which are not improving the model or we can perform principal component analysis by reducing the dimensions without dropping the attributes. basic rule to select principal components (PC) from all given principal components is to see the eigen values of these components, select those PC's whose eigen values are >= 1
@rubina-hq3gc3 жыл бұрын
best video sir its help me a lot
@manishn24422 жыл бұрын
sir thank you very much, you explain very well.
@mukeshsirvi63784 жыл бұрын
mja aa gya itna to mene thin salo me nhi sikha
@biswadeepdas87572 ай бұрын
dimag ki batti galat jal gai was epic sir
@kapiljetwani35402 жыл бұрын
bhagwan khud dhrti p nhi aa ske is liy unhone apko banyan❤⭐
@ShalabhBhatnagar-vn4he4 жыл бұрын
Awesome work!
@deepsant23725 жыл бұрын
Thank you so much sir,....you are great.😍
@ankitaray14052 жыл бұрын
Hum e aur pass kar neh ki chahat na hoti, aagar tum na hote, aagar tum na hote 🙏🙏🙏🙏
@animationcrust19934 жыл бұрын
Thank you sir ☺️🙏
@aloktiwari11095 жыл бұрын
Good and Easy explanation. You could clarify more why PC1 is selected over PC2, There is a reason for it.
@Raag_Jhankaar3 жыл бұрын
Wahh Bhai wahh
@datasciencewithshreyas18063 жыл бұрын
superb video
@tapanjeetroy82665 жыл бұрын
Thank you sir.. You are doing a great job
@GhanshyamAbrol4 жыл бұрын
Thanks also from Agricultural side
@weekendvibes4683 жыл бұрын
I understood everything thank you so much 👌👌
@mohammadnafees97045 жыл бұрын
great explanation
@nikhilpachkor83494 жыл бұрын
sahi bataya bhaiya
@poojamankar5 жыл бұрын
Thanks for sharing.... Good efforts
@parthprajapati34874 жыл бұрын
It was nice and simple explaination
@azmatsiddique35645 жыл бұрын
❤️thank you sir..great explanation
@azmatsiddique35645 жыл бұрын
Can you please upload practical of pca
@amritgurung17222 жыл бұрын
He teaches whole CS courses!!!
@MrSoumyabrata4 жыл бұрын
Thank you for explaining very well. I just like how simply you can explain any complex topic.