PCA Indepth Geometric And Mathematical InDepth Intuition ML Algorithms

  Рет қаралды 108,076

Krish Naik

Krish Naik

Күн бұрын

Пікірлер: 90
@exploreEverything4519
@exploreEverything4519 Жыл бұрын
First I understood pca concept 3 years back from nptel lecture. It was full of mathematics and It went far above my head because the theory part was missing. Believe me with your explanations I can understand his lecture too. No one could explain the way you have explained. It was outstanding.
@aditinautiyal4299
@aditinautiyal4299 Жыл бұрын
Thank you so much for not only sharing your knowledge but also putting so much effort to cover each and every point of the particular topic.
@IshanGarg-y1u
@IshanGarg-y1u Жыл бұрын
This is a good video, I recommend first you watch PCS step by step guide from stat quest to get a high level view with animations, then you watch this video to get more details and understanding alongside some code. Then in case you want to know the mathematics behind it refer to some articles online where the explain why we calculate the covariance matrix, then build the objective function using lagrange multiplier and then derive why eigen values of covariance matrix are the desired results
@aj_actuarial_ca
@aj_actuarial_ca 11 ай бұрын
PCA is so very well explained in your video sir. You're really the best teacher ever !!!
@akashpaul9892
@akashpaul9892 Жыл бұрын
You really are a good teacher brother... Teaching with relatable examples help to understand each topic so perfectly and easily.. Thank you so much brother.. Keep teaching us... Love from Bangladesh
@pritamrajbhar9504
@pritamrajbhar9504 8 ай бұрын
thanks a lot, Krish this is the simplest and most detailed video about PCA.
@man9mj
@man9mj 10 ай бұрын
thank you for this elegant effort in explaining PCA
@syco-brain8543
@syco-brain8543 4 ай бұрын
best video about pca on internet so far
@Harsh_Yadav_IITKGP
@Harsh_Yadav_IITKGP Жыл бұрын
Krish your efforts are remarkable in this ml series.....
@taslima5007
@taslima5007 9 ай бұрын
You are my favourite youtuber and teacher.
@ashwintiwari9642
@ashwintiwari9642 2 жыл бұрын
No where I can find this explanation it's too good no confusion no complex demonstration use cases a cleanest and simplest way to understand PCA in depth thanks alot Krish it takes lot of takes and research to explain single topics in data science and in this way it's all appreciated work
@adnanshujah6230
@adnanshujah6230 8 ай бұрын
best of the best lecture .covers all the required concepts about subject . most of videos available only shows how to perform PCA but not whay it is required and concept behind it .but sir Krish thankyou so much for such a detailed lecture and clearing the concepts . highly recommended lecture and his channel 🥰🥰🥰🥰🥰🥰
@adnanshujah6230
@adnanshujah6230 8 ай бұрын
i simply say this one video is enough to get the clear concept ;once again thankyou soooooo .... much sir Krish
@SanthoshKumar-dk8vs
@SanthoshKumar-dk8vs 2 жыл бұрын
Thanks for sharing Krish really helpfull, last two days am refreshing this topic only🤗
@yogendrapratap1982
@yogendrapratap1982 Жыл бұрын
Everything had been really resourceful in lecture series but this lecture was overly extended, 30 min topic has been extended to 1 hours 30 mins repeating same stuff again and again
@dipamsarkar6626
@dipamsarkar6626 Жыл бұрын
This guy should be named as "God father of Data Science India" an absolute legend
@paneercheeseparatha
@paneercheeseparatha Жыл бұрын
Wonderful try to explain PCA without much mathematics. Though it would be great if you also do a video on implementing PCA from scratch in python. Loved your playlist! kudos to you!
@samareshms4591
@samareshms4591 9 ай бұрын
This guy is single handedly carrying the AI ML community in the India 🙇‍♂🙇‍♂
@vinothkumar7531
@vinothkumar7531 Жыл бұрын
You are a great teacher I ever seen in my entire life.The way you are teaching even makes the lazy or slow learner to a strong learner using Krish Naik g(ji) Boosting algorithm.Just Kidding 😃😃.Hatsoff to your effort to help the people.
@amitx26
@amitx26 9 ай бұрын
Sir, I thing have felt strongly is that you expain and deliver a little better in recorded videos. Thanks for providing such great content for us for free!
@RakshithML-vo1tr
@RakshithML-vo1tr 9 ай бұрын
Hi bro I am starting data science how can I start? By seeing Krish sir roadmap and like u said should I prefer recorded videos
@viratkumar9161
@viratkumar9161 Жыл бұрын
Its quite vage to say if pearson correlation value is zero there is no relationship between x and y. Example consider Y= mod(X) line the person correlation is 0, but still there is relationship easily visible after plotting
@SiddharthSwamynathan
@SiddharthSwamynathan Жыл бұрын
Correct. Pearson correlation has the capacity only to capture the linear relationship. Coefficient 0, would be no linear relationship exists. But there exists a possibility of a non linear relationship within the covariates and target.
@pankajray5939
@pankajray5939 2 жыл бұрын
PCA is one of the important topics of ML
@ramakrishnayellela7455
@ramakrishnayellela7455 8 ай бұрын
Such a good explanation krish
@IzuchukwuOkafor-v6e
@IzuchukwuOkafor-v6e 10 ай бұрын
Very lucid explanation of PCA.
@baravind6548
@baravind6548 8 ай бұрын
In extracting from 2D to 1D, if PC1 has the higer varience and PC2 has 2nd higher varience. Is it nessesary that PC1 should be perpendicular to PC2?
@thop9747
@thop9747 Жыл бұрын
was really helpful. Keep up the work sir.
@kvafsu225
@kvafsu225 Жыл бұрын
Excellent presentation.
@irisshutterwork1411
@irisshutterwork1411 Жыл бұрын
Well explained. Thank you
@AjayPatel-pc1yf
@AjayPatel-pc1yf Жыл бұрын
Gjb sir mja aa gaya❤
@manikandanm3277
@manikandanm3277 2 жыл бұрын
In theory part, to find the eigen values, you multiply the covariance matrix with a vector. How's that particular vector V is chosen and used to multiply with the covariance matrix? I'm confused with this only, otherwise a great lecture, thanks krish👍
@priyam39
@priyam39 Жыл бұрын
That v is the eigen vector itself we are looking for.Sir just explained
@bhagyashriakolkar7763
@bhagyashriakolkar7763 Жыл бұрын
Thank you sir....nice explanation
@unicornsolutiongh2022
@unicornsolutiongh2022 Жыл бұрын
powerfull lecture. keep it up sir
@user-rx5kq6oo9y
@user-rx5kq6oo9y 2 жыл бұрын
Bro can you make cheat sheet of data science like multiple dsa sheets on youtube?
@Nikhillllllllllllll
@Nikhillllllllllllll Жыл бұрын
how to get names of those 2 features we got after feature extraction
@mr.pianist
@mr.pianist 5 ай бұрын
very good lec beginner friendly
@shivachauhan2837
@shivachauhan2837 2 жыл бұрын
To improve my resume what should I try kaggle Or open source
@sumankumar01
@sumankumar01 Жыл бұрын
Campus x and you both refer same books or what since the example is same ?
@lagangupta3193
@lagangupta3193 5 ай бұрын
How will we decide the number of features that we have to mention in n_components?
@ITSimplifiedinHINDI
@ITSimplifiedinHINDI 6 ай бұрын
Greater than ko Less than aur Less Than ko Greater Than, kyoun likh rahe ho Guruji.
@the-ghost-in-the-machine1108
@the-ghost-in-the-machine1108 Жыл бұрын
Thanks sir, god bless you!
@javeedtech
@javeedtech 2 жыл бұрын
Thanks for video, from fsds batch 2
@chayanikaboruha6657
@chayanikaboruha6657 10 ай бұрын
Krish please make a video regarding how we can use auto encoder for text data
@jitendrasahay3847
@jitendrasahay3847 3 ай бұрын
If we have 3 features then we are getting 3 eigen vectors and later we combine 2 out of them to create 1 eigen vector. Combining here basically mean projection. Earlier when we projected we got n eigen vectors out of n feature then again we will get 2 eigen vectors. Where the dimensionality reduction is happening??? What I m missing here really??? Can anyone help ???
@RahulA-b9o
@RahulA-b9o Жыл бұрын
How do i know that the model is over feeded.. any method to find out that the model trained is under curse of Dimensionality???????
@CodeWonders_
@CodeWonders_ 2 жыл бұрын
Can you tell me who will teach in data science course you or sudhanshu sir ?
@eurekad7340
@eurekad7340 3 ай бұрын
If possible could you please make video on truncated svd as well. I searched but I couldn't find any video on svd from you
@faizannaseem3384
@faizannaseem3384 3 ай бұрын
See Go Classes Free Leactures for SVD
@yachitmahajan3579
@yachitmahajan3579 9 ай бұрын
best explanation
@harshitsamdhani1708
@harshitsamdhani1708 Жыл бұрын
Thank You for the video
@kunalpandya8468
@kunalpandya8468 Жыл бұрын
After we get 2 features from pca, what is the name of those two features?
@mohitkumarsingh7318
@mohitkumarsingh7318 10 ай бұрын
Sir pls, also cover SVD , it's a request
@Bitter_Truth-zc4eq
@Bitter_Truth-zc4eq 11 ай бұрын
Which software are you using for writing?
@KRSandeep
@KRSandeep 9 ай бұрын
Scrble Ink which is available for windows laptop only
@baravind6548
@baravind6548 8 ай бұрын
How to get the vector v? that is to be multiplied by A
@muhammadrafiq1720
@muhammadrafiq1720 Жыл бұрын
There is Ad after each 3 to 4 minets , difficult to concentrate especially with low speed inter et.
@somnath1235
@somnath1235 2 жыл бұрын
What does the covariance and corelation decide ? Does covariance denotes how closely 2 features exist? And does corelation denotes whether the features are directly or inversely proportional?
@saisrinivas3066
@saisrinivas3066 2 жыл бұрын
covariance only describes the type of relationship whereas correlation describes the type and strength of the relationship between two numerical variables
@bhargav1811
@bhargav1811 2 жыл бұрын
Correlation is scaled version of covariance !!!! Range of covariance = (-inf,+inf) Range of correlation = (-1,+1)
@Datadynamo
@Datadynamo 2 жыл бұрын
Covariance is a measure of the joint variability of two random variables. It tells you how two variables are related to each other. A positive covariance means that the variables are positively related, which means that as one variable increases, the other variable also tends to increase. A negative covariance means that the variables are inversely related, which means that as one variable increases, the other variable tends to decrease. Correlation is a normalized version of covariance, it gives the measure of the strength of the linear relationship between two variables. It ranges from -1 to 1, where -1 is the perfect negative correlation, 0 is no correlation and 1 is perfect positive correlation. Like covariance, it tells you how two variables are related to each other, but it gives you a more intuitive sense of the strength of the relationship, as it is scaled between -1 and 1.
@BMVLM-
@BMVLM- Ай бұрын
Bhai content mast hai lekin advertisment bhot sare hai bot disturbing.
@mr.patientwolfx5984
@mr.patientwolfx5984 2 жыл бұрын
sir what do you think of guvi data science program? can i join.
@viratjanghu945
@viratjanghu945 Жыл бұрын
Sir please make a video on the independent component analysis and linear discriminant analysis it is my humble request sir please
@PAVVamshhiKrishna
@PAVVamshhiKrishna 5 ай бұрын
Fantastic
@samthomas3881
@samthomas3881 10 ай бұрын
Thanks Sir!
@BharatDhungana-n4s
@BharatDhungana-n4s 11 ай бұрын
implementation is best
@MamunKhan-px2vb
@MamunKhan-px2vb 2 жыл бұрын
Just Great
@MrKhan-xu1vf
@MrKhan-xu1vf 2 жыл бұрын
Kinda amazing teaching skills
@arungireesh686
@arungireesh686 Жыл бұрын
superb
@SohanDeshar-pf6zh
@SohanDeshar-pf6zh 6 ай бұрын
Good explanation but it might be a good idea to remove one of the "InDepth"s from the video title.
@siddharthmohapatra7297
@siddharthmohapatra7297 2 жыл бұрын
Sir I want to ask ...I have no coding skills and background...bcom Background Can I do data science masters from pw skills ... everything will be taught from verry basics ???
@rutvikchauhan1572
@rutvikchauhan1572 Жыл бұрын
You can do it, first learn python , then search data science cources on youtube and on various apps like udemy , coursera , swayam...... And enrolled on it......
@siddharthmohapatra7297
@siddharthmohapatra7297 Жыл бұрын
@@rutvikchauhan1572 I have enrolled in pw skills
@anuraganand6675
@anuraganand6675 Жыл бұрын
@Rutvik Chauhan how is you feedback of pw skills data science course?
@akindia8519
@akindia8519 7 ай бұрын
​@@siddharthmohapatra7297 hi can you please give us feedback of pw skills' data science masters program?
@AmmarAnjum-h2s
@AmmarAnjum-h2s 11 ай бұрын
Why sir you don't talk point to point things..repeating everything again and missing some stuff to talk
@ramdharavath7542
@ramdharavath7542 Жыл бұрын
Useful
@siddhisg
@siddhisg Жыл бұрын
greater than less than symbol though🥲
@shanthan9.
@shanthan9. 11 ай бұрын
Good video but too lengthy
@theharvi_
@theharvi_ 8 ай бұрын
❤thx
@shruti9731
@shruti9731 9 ай бұрын
❤❤
@vaibhavyadav-w8g
@vaibhavyadav-w8g Жыл бұрын
@jitendrasahay3847
@jitendrasahay3847 3 ай бұрын
I have to say : a very short precise material has been elongated irritatingly. Repetative statements...
@satyapujari7731
@satyapujari7731 Жыл бұрын
After every five minutes, there was an advertisement, which made it difficult to concentrate while watching videos.
@rajdama205
@rajdama205 Жыл бұрын
Use youtube vanced broo
@satyapujari7731
@satyapujari7731 Жыл бұрын
@@rajdama205 Great! 🤟
@vishalgupta9620
@vishalgupta9620 Жыл бұрын
noob knows nothing
@priyotoshsahaThePowerOf23
@priyotoshsahaThePowerOf23 Жыл бұрын
BEST
Complete Machine Learning In 6 Hours| Krish Naik
6:37:52
Krish Naik
Рет қаралды 1 МЛН
Principal Component Analysis (PCA)
26:34
Serrano.Academy
Рет қаралды 420 М.
🎈🎈🎈😲 #tiktok #shorts
0:28
Byungari 병아리언니
Рет қаралды 4,5 МЛН
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
Their Boat Engine Fell Off
0:13
Newsflare
Рет қаралды 15 МЛН
Data Analysis 6: Principal Component Analysis (PCA) - Computerphile
20:09
Terence Tao at IMO 2024: AI and Mathematics
57:24
AIMO Prize
Рет қаралды 704 М.
Complete Dockers For Data Science Tutorial In One Shot
1:19:29
Krish Naik
Рет қаралды 136 М.
StatQuest: Principal Component Analysis (PCA), Step-by-Step
21:58
StatQuest with Josh Starmer
Рет қаралды 3 МЛН
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 419 М.
🎈🎈🎈😲 #tiktok #shorts
0:28
Byungari 병아리언니
Рет қаралды 4,5 МЛН