Beat Your Calculus Teacher for This Integral

  Рет қаралды 546

Dr PK Math

Dr PK Math

Күн бұрын

In this video, I am evaluating this interesting integral using integration by parts and trig substitution.
#math #maths
Subscribe to Dr. PK Math here ⤵️
www.youtube.co...
*************
✅ Follow Modern Dr PK Math on social media:
Instagram ▶️ / drpkmath1234
Facebook ▶️ / drpkmath
Twitter ▶️ / drpkmath
*************

Пікірлер: 9
@Min-cv7nt
@Min-cv7nt Күн бұрын
You are the best math professor on KZbin platform
@iqtrainer
@iqtrainer 2 күн бұрын
Another cool video🎉
@MrGLA-zs8xt
@MrGLA-zs8xt Күн бұрын
Enjoyed this video so much professor
@domedebali632
@domedebali632 19 сағат бұрын
I am pretty sure he is the most mathematically talented professor on KZbin
@xinpingdonohoe3978
@xinpingdonohoe3978 2 күн бұрын
Here's a cool trick. That +c can actually be useful. You set c=0, but try setting c=-1/2 to get (x²-1)/2 arcsin(x)+1/2 ∫(1-x²)/√(1-x²) dx =(x²-1)/2 arcsin(x)+1/2 ∫√(1-x²) dx Then just do an x=sin(u) substitution to get x²/2 arcsin(x)-1/4 arcsin(x)+1/4 x√(1-x²)+C It's the same method, but it uses that constant from integration by parts to speed things up.
@NadiehFan
@NadiehFan 22 сағат бұрын
This integral can be done using nothing but integration by parts. First, using integration by parts exactly as in the video we have (1) ∫ x∙arcsin(x)dx = ½x²∙arcsin(x) − ½∙∫ (x²/√(1 − x²))dx Now, since |x| ≤ 1 and therefore x²/√(1 − x²) = (1 − (1 − x²))/√(1 − x²) = 1/√(1 − x²) − (1 − x²)/√(1 − x²) = 1/√(1 − x²) − √(1 − x²) we have (2) ∫ (x²/√(1 − x²))dx = ∫ dx/√(1 − x²) − ∫ √(1 − x²)dx Again using integration by parts, we also have (3) ∫ √(1 − x²)dx = x√(1 − x²) + ∫ (x²/√(1 − x²))dx Substituting (3) in (2) we have ∫ (x²/√(1 − x²))dx = ∫ dx/√(1 − x²) − x√(1 − x²) − ∫ (x²/√(1 − x²))dx and therefore 2∙∫ (x²/√(1 − x²))dx = ∫ dx/√(1 − x²) − x√(1 − x²) which gives (4) ∫ (x²/√(1 − x²))dx = ½∙∫ dx/√(1 − x²) − ½∙x√(1 − x²) Substituting (4) in (1) we have ∫ x∙arcsin(x)dx = ½x²∙arcsin(x) − ½∙(½∙∫ dx/√(1 − x²) − ½∙x√(1 − x²)) which gives (5) ∫ x∙arcsin(x)dx = ½x²∙arcsin(x) + ¼∙x√(1 − x²) − ¼∙∫ dx/√(1 − x²) Finally, noting that 1/√(1 − x²)) is the derivative of arcsin(x) this gives (6) ∫ x∙arcsin(x)dx = ½x²∙arcsin(x) + ¼∙x√(1 − x²) − ¼∙arcsin(x) + C and we are done. This is equivalent with the result found in the video since we have ½∙sin(2∙arcsin(x)) = sin(arcsin(x))∙cos(arcsin(x)) = x√(1 − x²).
@alexchan4226
@alexchan4226 21 сағат бұрын
x^2*sin^(-1)x/2+c
@Min-cv7nt
@Min-cv7nt 4 сағат бұрын
Alex the crazy chan
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 159 М.
Fourier Series is Surprising Integration Weapon
16:45
Dr PK Math
Рет қаралды 2,7 М.
ВЛОГ ДИАНА В ТУРЦИИ
1:31:22
Lady Diana VLOG
Рет қаралды 1,2 МЛН
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 571 М.
Understand u-substitution, the idea!
12:31
blackpenredpen
Рет қаралды 199 М.
DESTROYING a Digamma Integral
20:55
Ginger Math
Рет қаралды 245
life changing integration by parts trick
5:23
Dr Peyam
Рет қаралды 502 М.
What is 0 to the power of 0?
14:22
Eddie Woo
Рет қаралды 10 МЛН
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 600 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 768 М.
Ultimate Integration Formulas
11:58
Dr PK Math
Рет қаралды 582
Life-Changing Integration Weapon
4:46
Dr PK Math
Рет қаралды 165
ВЛОГ ДИАНА В ТУРЦИИ
1:31:22
Lady Diana VLOG
Рет қаралды 1,2 МЛН