The "^" over the "o" usually means, in French, that an "s" was dropped. So it's either "L'Hospital" ("s" and no "^") or "L'Hôpital" ("^" and no "s"). Never both: "L'Hôspital" is wrong. But either of the other ways is correct. I'll go for... mmm... The one with the "s", more old-fashionned. And because "hôpital" is the current french word for... "hospital". I guess if I spoke English, I would go for the "ô" ;)
@blackpenredpen6 жыл бұрын
Oh wow! Thanks for sharing!! I have been wondering that for a long time!
@PackSciences6 жыл бұрын
Guillaume de l'Hospital/Hôpital prefered using Hospital for printed documents, as circumflex accents weren't easy to manipulate at the time. In Analyse des Infiniments Petits, the book that uses the named rule, his name his spelled l'Hospital, but it's only in the reeditions of the book, as the original handwritten didn't have any author note. However, when he was writing handwritten, it is said (from what I've heard in class) that he wrote it l'Hôpital. Anyways, now the use of "accents are difficult to print" doesn't make sense anymore, but if you have a non-AZERTY keyboard, it can be pretty handy to spell it Hospital. Therefore, I recommend using Hospital for quick documents, and Hôpital for long documents and handwritten, as it was taught to me. However, you can find examples of both in the literature so I guess the choice doesn't matter that much. Alternatively, in the Encyclopedia of Diderot and D'Alembert, his name is spelled "Hopital" (probably to avoid printing ô character).
@cromthor6 жыл бұрын
You're welcome, and btw, I like it how your enthusiasm and love for math show in your videos. "So cool, isn't it?" :D I feel the same -and that makes my highschool students laugh ;)
@gnikola20136 жыл бұрын
cromthor This is amazing
@gnikola20136 жыл бұрын
PackSciences that's cool!!
@TheBlueboyRuhan6 жыл бұрын
Mate, every person in my A level maths class I recommend and I love your vdeos to the point I want to do maths at university You're an absolute youtube star and I hope you keep making the great, consistent content :)
@matthewstevens3406 жыл бұрын
Sir Rahmed if only my friends liked maths enough to do the same 😁
@idontknow1630 Жыл бұрын
so you doing maths at uni then
@arkabanerjee10913 жыл бұрын
Sir thank you so much. Till now I used L'Hospital rule countless no. of times for evaluating scary looking limits with ease, but I didn't know why this method worked in the first place. Love maths and love you 3000 ❤️.
@shacharh54706 жыл бұрын
It's nice to see you doing proofs on your channel, you usually do more technical exercises.
@blackpenredpen6 жыл бұрын
Yay. I do some proofs here and there. : )
@craftbuzzwonky47523 жыл бұрын
@@blackpenredpen And I am pleased at your proofs!
@ThePron86 жыл бұрын
just a quick question: why is this theorem so much hated? My professor of calculus in high school warned us from using it and at university my professor of calculus also said it. I can't understand, i find it super useful for evaluating limits of real function in one variable
@blackpenredpen6 жыл бұрын
I think they mean the cases that don't use L'H rule for trying to prove derivative. For example, lim as x goes to 0, of sin(x)/x, should NOT be done by L'H. Since that's a crucial limit for getting the derivative of sin(x). And if we would going to use L'H on that , we would get cos(x)/1, but this would be what we called "circular reasoning"
@IronLotus156 жыл бұрын
I guess it is good though to have that sanity check, of checking that limit of sin(x)/x going to 0 is 1 by L'H.
@ThePron86 жыл бұрын
In general I felt a sense of rejection of this rule on their part. They encouraged us to use Taylor/MacLaurin series instead and their point was :" If you try to list the classes of real function in one variable who became easier to work with when you differentiate them, you will find out that they are only polynomials and trigonometric function with a simple argument".
@52flyingbicycles6 жыл бұрын
blackpenredpen CIRCULAR reasoning with SIN and COS? I see what you did there.
@blackpenredpen6 жыл бұрын
VeryEvilPettingZoo Excellent explanation and examples!!! LOVE IT!
@alkankondo896 жыл бұрын
Two coincidences involving this video: (1) I was just thinking about how I've seen more than one unrelated instances of people pronouncing it "L'Hôspital" when, in my experience, I've never actually seen it spelled that way. And (2), I was SERIOUSLY JUST TALKING WITH SOMEONE about this rule about 20 minutes ago, trying to justify why it's true but forgot how to prove it. Then, lo and behold, here is the video I need!
@blackpenredpen6 жыл бұрын
Hehehe, I read your mind!! The vid was secretly for you!
@Nobody-Nowhere-Nothing6 жыл бұрын
If you want to justify why it's true to someone then tell them this: If we are trying to get the limit x->a of f(x)/g(x), then just analyze what happens to functions separately as a x->a. Imagine zooming in at the point x=a for the function f(x), f(x) will start to look like a straight line. The more you zoom in, the more f(x) will look like it's derivative at the point x=a. Same thing goes for g(x).
@davidseed29396 жыл бұрын
Useful to show graphs of both functions wgich demonstrates L'H. Could also show power series expansion and see how that also fits. Also try seeing the relationship between sinx/2x and sin^2x/4x^2. Second case requires 2 uses of L'H graphing those functions also gives insight on the repeated appl8cation of L'H
@gchow96656 жыл бұрын
I learnt the same proof for L'Hopitol rule in my A-Level course, and this is baby proof!!!
@PackSciences6 жыл бұрын
Note about the thumbnail: I don't think zeros are happy
@blackpenredpen6 жыл бұрын
Oh come on Pack! Look at their smiles! : )
@PackSciences6 жыл бұрын
Addition? Ineffective? Multiplication? You end up looking at a glass. The zero-life is inherently sad.
@noname_whatsoever6 жыл бұрын
PackSciences Don't forget the restraining order denominators filed against them. : (
@dougrife8827 Жыл бұрын
Here is a much simpler and more intuitive proof of the rule. One way to approximate the limit of f(x)/g(x) as x approaches c is to try a value for x that is very close to c such as deltax+c where deltax is a very small number. In most cases, you can use a calculator to approximate the limit by selecting a very small number for deltax say 0.00001 and calculating f(c+deltax)/g(c+deltax). Before modern calculators there was a way to simplify this calculation using calculus: Notice that in this indeterminate case f(c+deltax) can be approximated by deltax*f’(c) and g(c+deltax) can be approximated by deltax*g’(c) with exact equality as deltax approaches zero. So the limit can be approximated by deltax*f’(c)/deltax*g’(c) and approaches the original limit as deltax approaches zero. Notice that when we calculate this ratio deltax cancels out and we are left with just f’(c)/g’(c). End of proof.
@ananyapathak87016 жыл бұрын
Hey! Blackpenredpenbluepen?
@blackpenredpen6 жыл бұрын
: )
@lalitverma58186 жыл бұрын
H
@ananyapathak87016 жыл бұрын
#YAY
@lalitverma58186 жыл бұрын
Deepa Pathak oh same country
@ananyapathak87016 жыл бұрын
Lalit Verma i am from mathematiconesia
@haakoflo Жыл бұрын
My mental image for l'Hôpital's rule was always a Taylor series expansion over and under the divisor, centered on a. Then find the lowest order term that is nonzero either over or under the divisor. Every higher order term goes to zero as (x-a) goes to zero.
@anikethdesai5 ай бұрын
I had a very intuitive proof for this. If say lim f(x)/g(x) x→a is giving me 0/0 or ♾️/♾️ then, it means that both f and g are reaching 0 or ♾️ as x→a together since f(a) = g(a) =0. If both f and g are reaching together, then it means that the curves of f and g start to coincide as x→a from both Left and Right Side. If both the curves start to coincide as x→a, then it means that the slopes or the derivatives of both f and g must be equal or slope of one (either f or g) must be a multiple of the other. Hence, L'Hopital rule works
@splodinatekabloominate8466 жыл бұрын
The correct way is "L'Hôpital's Rule", because the accent on the "o" replaces the s"" after it. For example, "forest" in French is spelled "forêt", and the accent on the e replaces the s. Also, the namesake's name was spelled "l'Hôpital." Spelling it with the "s" would be like spelling "L'Hosspital"
@Broody906 жыл бұрын
I have no clue if it works as a proof, but a function f can be approximated as f'(a)(x-a)+f(a), also g(x) can be approximated as g'(a)(x-a)+g(a). if you plage it in lim f(x)/g(x) then lim [f'(a)(x-a)+f(a)]/[g'(a)(x-a)+g(a)]. If (third condition) f(a)=g(a)=0, that's means lim [f'(a)(x-a)]/[g'(a)(x-a)] = lim f'(a)/g(a) = f'(a)/g'(a)
@narrotibi6 жыл бұрын
It's my most pleasant daily routine: watching the newest bprp video.
@bradycall1889 Жыл бұрын
Now the medical hospital’s rule starts to make sense (at least in some cases)
@bilz0r6 жыл бұрын
2:12 "Here is....." THE DEAL!
@lunjapaobaite40715 жыл бұрын
Please, do for Rolle's theorem slso
@joebrinson50406 жыл бұрын
I always enjoy your videos.
@Koisheep6 жыл бұрын
0:30 amen to that. It was the part I hated the most from Calc 2... L'Hôpital's proof Ok after seeing the video... i swear I don't remember it being so simple? I can't find the point where I can confidently say, "this proof doesn't work for other cases" except for a -> ∞. And even then, You can make go to the u world and say let u=1/x. I wish I had known this channel in high school (((sad)))
@ethan_martin6 жыл бұрын
I prefer L'H xD
@blackpenredpen6 жыл бұрын
ME TOO!!!!!!!!!!!!!!
@ugursoydan81873 жыл бұрын
GOD BLESS YOU MY BROTHER
@csanadtemesvari92516 жыл бұрын
we used to do it with mean value theorem
@manishKumar-mn9btАй бұрын
Thanks a very lot bro to clear the co nfusion
@aidangarner11816 жыл бұрын
Is the thumbnail loss?
@BilalAhmed-on4kdАй бұрын
what if g'(a)=0 ?, does this mesn that we can't use it again if after the first time we differentiate we still get 0/0?
@rhaq4264 жыл бұрын
Can't this qualify as a general proof? Since l'hopitals rule only qualifies for indeterminate forms (0/0 and infinity/ infinity) if you've proven it for 0/0 you've infinity as well. All indeterminate forms can be written as 0/0. For example, consider a limit lim_x->c f(x)/g(x) which is infinity over infinity, one can equivalently say lim_x->10^+ (1/g(x))/(1/f(x)) which is 0/0 and we've proven l'hopitals rule for 0/0
@siddharthpandey85169 ай бұрын
pretty easy proof. got to it myself. so intuitive :D
@lalitverma58186 жыл бұрын
Good proof
@Amine-gz7gq2 жыл бұрын
I like this guy. best explanation !
@ChefSalad6 жыл бұрын
You should do a fake L'Hospital's Rule question where you find functions f(x) and g(x): d/dx[f(x)/g(x)]=[df/dx]/[dg/dx]. I did this but couldn't find any functions where it really looked clear what was going on.
@gnikola20136 жыл бұрын
I prefer H'Lôspital lol
@lordyabo9910 Жыл бұрын
Can someone pls help. I thought the limit definition of derivative is lim as h----->0 ((f(x+h) -f(x)))/((h)). Why his definition of derivative is different? am I missing something?
@Cloud88Skywalker6 жыл бұрын
Is it legit to divide by (x-a) inside a limit of x->a ?
@neonet3106 жыл бұрын
Yes because it never really technically becomes zero. Practically lim x->a (x-a) behaves like zero (it adds/subtracts nothing and makes things multiplied by it near zero, so you would treat it as such) except in division, where you are allowed to divide by it (since it isnt _actually_ zero). this also applies to lim x->0 (x). 1+x=1 (approaches 1 since you add less and less), 1-x=1 (approaches 1 since you take less and less), 1·x=0 (approaches 0 since the decimal spaces go way to the right), and x/x=1 (since x isnt really ever 0 itself and is a valid division)
@yge10356 жыл бұрын
neonet 1™ but lim x->0 1/x is undfind... And if y=x-a And lim x->0 then y=0 So if you'll devide something by y it'll be undefind
@yge10356 жыл бұрын
Oh no because you devide both things by y then its ok
@yge10356 жыл бұрын
Or maybe not, I know that if you'll devide both sides by zero you just destroy the whole equation, but maybe if the limit is 0 its different
@BasOomen6 жыл бұрын
Y GE that limit 1/x is actually undefined because you get different answers depending on whether you go from 0+ or 0-. Respectively they _approach_ +inf and -inf.
@antoine25713 жыл бұрын
learning proof by earth to be able to use it in class ahahahahah teacher will hate me
@ghivarlynadiefaddarquthni51706 жыл бұрын
How about proofing in other indetermined situation like infinite/infinite and etc?
@hobodawg93646 жыл бұрын
That was *SUPREME*
@blackpenredpen6 жыл бұрын
As stated in the thumbnail!
@Kumar-oe9jm6 жыл бұрын
This is so much better than Dr Peyam's
@punditgi3 жыл бұрын
Many thanks for this video!
@НикитаЧистяков-х8б5 жыл бұрын
I know it's too late to ask but... It's allowed to calculate such limits of infinity/infinty indeterminate form situation with L'Hospital rule,isn't it? But why does this method work in this case?
@MT-od6by2 жыл бұрын
just take reciprocal of x as x goes to 0 and you get infinity.
@etienneparcollet7276 жыл бұрын
L'Hôpital. Because the circumflex stand for an obsolete s.
@dranxelaa67706 жыл бұрын
Étienne Parcollet +1
@IronLotus156 жыл бұрын
Would L'Hospital be valid? Without the circumflex?
@etienneparcollet7276 жыл бұрын
Yes considering he is not a recent mathematician. It is quite old-fashioned.
@yuxuanlin78824 жыл бұрын
wow,the most simplest proof
@dhyeypatel54486 жыл бұрын
Find Inverse of x + sin x?
@csanadtemesvari92516 жыл бұрын
since sin x is not bijectiv, I don't think it's invertable
@arthurreitz95406 жыл бұрын
Csanád Temesvári f(x)=x+sin(x) f'(x)=1+cos(x)>=0 It is bijectiv
@csanadtemesvari92516 жыл бұрын
i didn't go in that deeply, but since it's complicated, it must be true :)
@rikkigunawan33266 жыл бұрын
Can you help me integrate {1/((x^2)*(27x^2 + 6x - 1)^(1/2))}
@dentionyoll32246 жыл бұрын
What’s up with these thumbnails?
@blackpenredpen6 жыл бұрын
Summer vacation!
@andresxj16 жыл бұрын
Why couldn't g'(a) be equal to 0 in the particular case that f'(a) is also equal to 0, so we could do L'Hôpital again?
@blackpenredpen6 жыл бұрын
It's just a baby case this in vid. In reality, yes it could. And then you might be able to keep going with L'H.
@boraidaa13136 жыл бұрын
l'Hospital, the same way he himself spelled it! #yay
@mariomasters16 жыл бұрын
I thought the thumbnail was "Loss" lmao
@Mau365PP6 жыл бұрын
I love baby proofs now 😀
@blackpenredpen6 жыл бұрын
LOL!! = D
@نعمللوحدة4 жыл бұрын
Love u 2 muchhhh
@lianebans78852 жыл бұрын
Amazing man
@SteamPunkLV6 жыл бұрын
pf for proof? that's a new one :p
@aneecraft23504 жыл бұрын
HOSPITAL?
@carultch Жыл бұрын
The s is silent. It's usually written with either a hat over the o and no s, or with the s. French spelling makes no sense.
@Flanlaina4 жыл бұрын
Luo Pi Tai Lu?
@naturemeets6 жыл бұрын
the BEST !!!! man.
@flowerwithamachinegun26926 жыл бұрын
Neither my teacher nor my classmates would understand that :))
@john-athancrow41696 жыл бұрын
I didn't know how to say it. Sorry.
@john-athancrow41696 жыл бұрын
I thought f instead of g
@Berkolika6 күн бұрын
thank youu
@xaxuser50336 жыл бұрын
Why u don t choose me yeeeeeeeeh! #yay
@themeeman6 жыл бұрын
I prefer Bernoulli's rule
@ivanenkoandriy87536 жыл бұрын
Is it legal do divide top and bottom by (x-a)? It is approaching to 0, so we divide by zero and result in undefined...
@aadityajha75024 жыл бұрын
Lim of (x-a) is 0 directly implies it is not zero . This is the difference between approach something
@MohitBaboria3 ай бұрын
It is not exactly zero Even in the definition of derivative The denominator h approaches to zero And we somehow cancel the h using algebric methods while differentiating any function
@lorentzisagoat84094 жыл бұрын
In France the Hospital rule is forbidden even though it was invented by a Frenchman 😭
@carultch Жыл бұрын
Do they require you to call it Bernoulli's rule?
@rain_3573 жыл бұрын
Thanksss.
@opufy2 жыл бұрын
This guy should be making like 500k USD a year working for tesla or what have you.
@blackpenredpen2 жыл бұрын
I am definitely not that good for Tesla but thank you.
@opufy2 жыл бұрын
@@blackpenredpen you are, and you have a great personality and they'd want you after knowing you made this channel :)
@shukradityabose71316 жыл бұрын
i prefer whatever u prefer #YAY#BPRP
@blackpenredpen6 жыл бұрын
Shukraditya Bose I prefer L'H
@shukradityabose71316 жыл бұрын
I prefer L'H then XD
@blackpenredpen6 жыл бұрын
deal!
@shukradityabose71316 жыл бұрын
DEAL!#YAY
@inconnu82672 жыл бұрын
Perfect😄
@l1nk3536 жыл бұрын
I SUBBED
@SK-gy3ec3 жыл бұрын
Luv u sir
@joshmcdouglas17203 жыл бұрын
Lol you could’ve just used L’Hospitals rule to prove it on the first step lol
@tahirrazakhan65076 жыл бұрын
#YAA
@soumyachandrakar91006 жыл бұрын
L'hôpital rule is better
@Absilicon6 жыл бұрын
L'hopital #YAY
@john-athancrow41696 жыл бұрын
Yes. I know it doesn't do anything with the quotient rule.
@reeshav49556 жыл бұрын
L hopital ftw
@john-athancrow41696 жыл бұрын
I thought d'able was enable but… no. Sorry.
@majkgmajkg26136 жыл бұрын
lots of comments, lots of compliments... can I (as your > 1y subscriber) just #YAY?
@blackpenredpen6 жыл бұрын
Yes!!!!
@tanujabudhori3 жыл бұрын
❤️⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹⁹••••• from NDIA🇮🇳🇮🇳🇮🇳🇮🇳
@MrBenten8676 жыл бұрын
Doremon
@tuna38756 жыл бұрын
I prefer YOOOOOLER
@Pur_Jun6 жыл бұрын
#yay#yay
@PhasmidTutorials6 жыл бұрын
:D
@blackpenredpen6 жыл бұрын
yay!
@Chronozia6 жыл бұрын
More math! #YAY
@HARJINDERSINGH-wm4bn3 жыл бұрын
You are so hand some
@emanueleusai106 жыл бұрын
#YAY
@deenaaalkotb6 жыл бұрын
again why you didn't answer my question x=e^x I will give you some hints first work with complex numbers and secondly work with laumbert w function if you don't know the solution say to me and I'll send it to you thanks