What are the tens and the units digits of 7^7^7? Solution kzbin.info/www/bejne/lYCkd6yBj7yqr5osi=npITrvCxthrMc_QN
@amansparekh5 күн бұрын
What this links to is units in the ring Z[rootk]. Every unit has norm 1 and thus is a solution to the equation. Clearly units form a multiplicative group.
@paultijink42356 күн бұрын
Great! Please do make that video showing there are no other solutions!
@randomjin93926 күн бұрын
But now the most important part: how do you find that "first solution" - and more importantly, enure that it is the first (i.e. smallest)? Guess and check sounds very involved for equations with non-trivial coefficients, e.g. x²-73y² = 1217
@acelm84375 күн бұрын
Exactly, how do you even know a solution exists for all nonsquare k?
@SyberMath5 күн бұрын
You can use continued fractions to find the smallest solution and then build the others from that
@VideoFusco5 күн бұрын
@@SyberMathi don't it is so obvious how to use continued fractioj for that
@ssgamer56935 күн бұрын
That notebook was the least asian thing in the video.I can confirm that every competitive exam aspirant prefers longbooks(400pgs+) for exam prep because it is easier to maintain and search old things.
@ComrdFinisher-zb4kq6 күн бұрын
Nice to meet you ❤ Tomorrow morning I have mathematics exam wish me success
@SoBasicallyImRetarded6 күн бұрын
Same here
@cdkw26 күн бұрын
good luck!
@alphazero3395 күн бұрын
Good luck! Calc exam?
@ComrdFinisher-zb4kq5 күн бұрын
@ of course bro ,thank you
@triniasta5 күн бұрын
good luck,,
@Blaqjaqshellaq5 күн бұрын
Squaring 9+4*5^(1/2) gives the pair {161, 72}. (I was waiting for you to give that pair, but I had to figure it out myself.) You can also use this method to give rational approximations of the square root of 5: 9/4, then 160/72=20/9...
@thesupergamergr32554 күн бұрын
Happy new year y'all!! 🎇🎇🎇🎆🎆🎆
@Happy_Abe6 күн бұрын
Wouldn’t negating x values also give solutions so we also have all the reflected values
@aggelosaggelos82436 күн бұрын
so what? this is quite obvious since x^2=(-x)^2 for all reals. we are looking for the solution where x and y have the smallest absolute values they could have and we take the positive one for simplicity's sake. we say that the first solution (x1,y1) is the one for which |x1|
@Happy_Abe6 күн бұрын
@ yeah I’m just saying these are solutions too that weren’t mentioned since it was asked if these are all the solutions in the video, wasn’t a major point.
@devrimturker5 күн бұрын
Log Ladders, Lemmermeyer's Product
@Budgeman830304 күн бұрын
I may not understand the math completely but the video is amazing to watch
@asifulalamc4 күн бұрын
Amazing video! Happy new year to everyone. 🎉🎆
@hamdamoverali5 күн бұрын
Very well explained 😊
@johns.82465 күн бұрын
OK, now how about doing this for x^2 - 61y^2 = 1 ?
@GreenMeansGOF5 күн бұрын
I want to see the proof! Also, can this be extended to when the right hand side is composite?
@pzelact43286 күн бұрын
1:32 later is when? give me timecode so i can watch and understand every step not just seing something and forgeting about it
@johns.82465 күн бұрын
And for that matter, is there a simple way of finding all integer solutions for elliptic curves of the form y^2 = x^3 - x + r^2 ?
@Nikkikkikkiz5 күн бұрын
In my classes, we solve this by having the solution be a continued fraction and just write answer in continued fraction format
@scottleung95875 күн бұрын
Nice proof!
@jakobthomsen15955 күн бұрын
Very interesting!
@khoozu78025 күн бұрын
The pell equation x^2-2y^2=+-1 gives approximation of square root 2
@OubleJum2 күн бұрын
I dont understand anything, I just watch these to fall asleep
@kornelviktor69855 күн бұрын
The thumbnail is so cool
@SDCORL2 күн бұрын
Secant ,tangent/k are all of the solutions.
@Choco_Black695 күн бұрын
張耕宇學長好!
@octopuskengКүн бұрын
你好⊙ω⊙😊
@elecbertelecbert-l5eКүн бұрын
The Chinese are very smart thank you
@trelligan425 күн бұрын
Sorry, I really need comments for this gentleman.
@kimsmoke175 күн бұрын
Can you find a room with more echo? 😂
@JikoAmonus6 күн бұрын
im in 9th grade, I cant even do basic calculus
@محمدبورايب6 күн бұрын
it's not important for you, don't do it
@prabhakarsingh68215 күн бұрын
"Do not worry about your difficulties in Mathematics; I can assure you mine are still greater" - Einsteine
@محمدبورايب5 күн бұрын
@@prabhakarsingh6821 thank you i will use this quote later every there and where
@JollyBooger6 күн бұрын
🎉🎉🎉
@sergio4425-g7u5 күн бұрын
존나잘생겼네
@Maths7866 күн бұрын
If "f" is a differentiable function on the interval [0, 1], with the following boundary conditions: f(0) = 0 f(1) = 1 Then, find the minimum value of the integral: ∫ from 0 to 1 of (f'(x))² dx.
@debtanaysarkar97445 күн бұрын
1
@fuzzylostallrightstoexist6 күн бұрын
Zamn
@epicstar865 күн бұрын
peak
@abdulrahmanabukharma79693 күн бұрын
kzbin.info/www/bejne/q6LadGdnh6mDr8k
@nouarislimani5 күн бұрын
X=i^4 is solution of sqrt(x)=-1
@KewlWIS5 күн бұрын
its not
@nouarislimani5 күн бұрын
Sqrt(i^4)=i^2=-1
@KewlWIS5 күн бұрын
@nouarislimani sqrt(i^4) = sqrt(1) = 1, youre thing is wrong cuz whenever you do sqrt(x^2) its always equal to |x|
@markerguy5 күн бұрын
In mathematics we have a definition- √(x)² = |x|. Here it's √i⁴ = √(i²)² = √(-1)² = |-1| = 1. So this isn't possible.
@markerguy5 күн бұрын
Also with that logic in mind you can say that (-1)² is a solution too.
@yukfaicheung74845 күн бұрын
I will find god
@gobindaprasadpoudel5 күн бұрын
He has good knowledge of mathematics I had never learned till 10
@cy3er_hawkzz2876 күн бұрын
im too fast
@adamcionoob39126 күн бұрын
wow, that's so cool
@SudhakarSudhakardontineni4 күн бұрын
Happy New Year🎉❤ 🎂🎊💐👑💵💵💵💵💵💵🧠🧠🧠🧠🧠🧠📐(^o^) to MM is MATHEMATICS MASTER