0^0=1 by convention in hyperfactorial as well. : ) Just like in power series, see this video kzbin.info/www/bejne/qHvMnWtrfK14r8U
@seroujghazarian63436 жыл бұрын
I thought 0^0 was undefined
@angelmendez-rivera3516 жыл бұрын
Serouj Ghazarian 0^0 is an indeterminate form, which is why limits with this form can equal many different values and exist. This is different from the expression not being defined. If a limit ever is evaluated to equal an undefined arithmetic or algebraic expression, then the limit does not exist. There is a much more rigorous way to state this, but I’m not going to bother with on a short KZbin comment. Needless to say, there is much evidence that suggests that 0^0 is a necessary convention in mathematics, and in most fields of study, 0^0 = 1 is assumed even if it is unprovable.
@seroujghazarian63436 жыл бұрын
@@angelmendez-rivera351 exactly! LIMITS! you know why 0^0 is inderterminate? Because it takes you straight to 0×infinity (lim x->0+ e^(xlnx)) and I'm pretty sure that ln(0) is undefined. Although, if we think like that, 0 itself is undefined
@seroujghazarian63436 жыл бұрын
@@angelmendez-rivera351 also, while you're at it, why don't you take sin(0)/0=1, (cos(0)-1)/0=0, log(b=1)(1)=1 (actually, the last one can be any real number)
@lucazara91376 жыл бұрын
I found this formula for negative hyperfactorial H(-n) = (-1)^(n+1)*(n-1)^(n-1)*H(-n+1)
@kingbeauregard6 жыл бұрын
Cool jacket! Did you start a motorcycle gang for mathematicians? You could call yourselves The Unbounded Functions.
@blackpenredpen6 жыл бұрын
lol, that will be cool!
@emethirsch71076 жыл бұрын
Speed Without Limit!
@Uni-Coder5 жыл бұрын
Painted with black pen
@blazedinfernape8866 жыл бұрын
5!= number of seconds in 2 minutes. H(5)=number of milliseconds in a day. Wow that escalated quickly.
@Gold1618036 жыл бұрын
I think 10! is the number of seconds in six weeks
@blazedinfernape8866 жыл бұрын
@@Gold161803 yup! Numberphile did a video on it.
@stewartzayat75264 жыл бұрын
And what is H(10)?
@brennanherring90594 жыл бұрын
@@stewartzayat7526 Number of Planck times in 11.63 seconds.
@SeriousApache6 жыл бұрын
I think with enough brute force it is possible to do H(-1)
@angelmendez-rivera3516 жыл бұрын
RUSapache Read my comment above, where I derived a symmetry formula for all integers n, extending H for negative inputs, and I also demonstrated that every half-integers is a root of H(x) given this definition of H.
@Kitulous6 жыл бұрын
well, if we go from n to 1 so it looks like this: 1 П k^k k=n Then it would work, actually. H(-1) in this case is (-1)^(-1)*0^0*1^1 We got a 0^0 problem here. But if to fix it knowing that lim x->0 (x^x) =1, then it's (-1)^(-1)*1*1 = -1*1*1 = -1. Seems legit? I think it does.
@angelmendez-rivera3516 жыл бұрын
Craftist Except you are not allowed to do that, and that is not the definition of the hyper-factorial. In particular, if you have a product over an ordered sequence, then the indexing is not allowed to happen over a variable boundary if there is no function over the boundary and if the upper boundary is a fixed constant which is lower. By your argument, H(n) = 0 everywhere except for H(1) = 1, which is absurd. No, we simply define H via the recursion formula, and if the value H(x) exists for some x, then it must satisfy the recursion. Then we say that H(0) = 1 by the recursion, and if we use a limit or adopt the convention 0^0 = 1 - and Let me tell you that there is far more reason to adopt than to not adopt it - then we can prove easily that H(-1) by the recursion. However, H(n) for n < 0 could not be calculated using products as you tried it because products are undefined for negative integers. Product and summation notation are a pain in the ass and they only add obstacles unnecessarily to the problem, even if they are more intuitive.
@MrRyanroberson16 жыл бұрын
Easy. H(1)=1=H(0)×1, so H(0)=0^0= conventionally 1. Then H(0)=0^0 × H(-1)=H(-1), and from there H(-n)=H(n)×H(-1)×-1^(f), and the H(-1) goes away, being equal to 1. f must be worked out to agree with the parity of H(-n), I'm sure there's a closed form. The reason H(n) appears is because on the left side it gets multiplied by values ^ negatives, and so you can see that (-2)^(-2)=1/2^2, with the only difference being a factor of -1 for odd bases, and 1/2^2 on the left becomes 2^2 on the right
@williamallen91456 жыл бұрын
Once upon a time there was a factorial, he drinks a lot of coffee and eats a lot of sugar, he is... HYPER. Haha
@blackpenredpen6 жыл бұрын
Pervy Sage lolll
@kohwenxu4 жыл бұрын
XD
@gouravmadhwal55486 жыл бұрын
Plz integrate ln(ln(ln(lnx)))
@angelmendez-rivera3516 жыл бұрын
Gourav Madhwal Cannot be done in terms of elementary functions, but...
@DiegoMathemagician6 жыл бұрын
extreme integration math 1052 xD
@MichaelProds996 жыл бұрын
@@DiegoMathemagician just put the horseshoe dude
@ZelForShort6 жыл бұрын
Isn't that horseshoe math?
@gouravmadhwal55486 жыл бұрын
@@ZelForShort yes it is
@2kreskimatmy6 жыл бұрын
0^0=1 :thinking:
@IQuick143cz6 жыл бұрын
Is there any real continuation of the hyperfactorial? Similar to how we have the Gamma function for the regular factorial.
@vincentwilliamrodriguez35726 жыл бұрын
hyperfactoreos
@Dreamprism6 жыл бұрын
Vincent William Rodriguez sounds tasty
@xusui_28306 жыл бұрын
Ever since I started watching you, you've reignited my passion for mathematics. Thank you :)
@blackpenredpen6 жыл бұрын
xusui _ : )
@NonTwinBrothers6 жыл бұрын
these thumbnails mannnn
@blackpenredpen6 жыл бұрын
: ))))))
@yrcmurthy83236 жыл бұрын
Superb right ?
@blackpenredpen6 жыл бұрын
@@yrcmurthy8323 thanks!
@yrcmurthy83236 жыл бұрын
*@blackpenredpen No need to say thanks sir,. You deserve an 👏 applause*
@alex_ramjiawan Жыл бұрын
If we reverse the input to n and n+1, etc, and input negative numbers, it equals (H(n))^-1.
@AndDiracisHisProphet6 жыл бұрын
so the hyperfactorial of 0 represents the number of milliseconds in one millisecond. also, better notation would be "n?"
@blackpenredpen6 жыл бұрын
That's so much better!
@AndDiracisHisProphet6 жыл бұрын
Isn't it?
@blackpenredpen6 жыл бұрын
AndDiracisHisProphet it is! Hmmm, what should I draw next? I did fish, shark, what's next??
@stealthpilot29356 жыл бұрын
@@blackpenredpen a dolphin
@AndDiracisHisProphet6 жыл бұрын
Octopus?
@yaboylemon95786 жыл бұрын
Really digging the new fish/shark themed thumbnails.
@cfgauss716 жыл бұрын
Hyperfactorial is cool...BUT...it is not as cool as your jacket, isn't it?
@blackpenredpen6 жыл бұрын
Arthur Clay lol thank you!!
@Zafarrrrrrrrr6 жыл бұрын
hyperfactoreos :D
@hyperupcall6 жыл бұрын
That's a slick jacket! Love it!
@blackpenredpen6 жыл бұрын
Lightning Fast thank you!!!
@General12th6 жыл бұрын
I just started the video. I can't wait to learn about hyperfactoreos!
@General12th6 жыл бұрын
H(0) = 0^0 * H(-1) 1 = 0^0 * H(-1) 0^0 is undefined, so H(-1) is undefined. The question, then, is what about noninteger values of n? What about complex values of n?
@ffggddss6 жыл бұрын
When computing H(5), you can group the factors as follows: H(5) = 5⁵·4⁴·3³·2²·1¹ [2² = 4, so put it in with the 4's] = 5⁵·4⁵·3³ = 20⁵·27 = 3,200,000·27 = 86,400,000 Fred
@krisbarc49276 жыл бұрын
Nice video. What about "tetrafactorial" : T(n) = n^(n-1)^(n-2)^...^1 ?
@Someniatko5 жыл бұрын
^...^
@NoahmassMulti Жыл бұрын
That would be 2^10^44 if T(5) was the input
@NoahmassMulti Жыл бұрын
Which is around 10^10^43.6
@nikodempatrycjuszswiercz40646 жыл бұрын
There's another formula for it I've found (using math not google): H(n) = n!/0! * n!/1! * n!/2! * ... * n!/(n-2)! * n!/(n-1)!
@mr_1wr5726 жыл бұрын
Cool!
@nikodempatrycjuszswiercz40646 жыл бұрын
This one actually uses regular factorials showing the „hyperness” of the hyperfactorial
@Cloud88Skywalker6 жыл бұрын
@@nikodempatrycjuszswiercz4064 This is exactly what I thought he was going to do when he says he's going to rearrange. I did, and you can compact the formula to: *H(n) = (n!)^n / sf(n-1).* sf(n) is the superfactorial, I just looked it up, and it's sf(n) = n! · (n-1)! · (n-2)! · ... · 2! · 1!
@plasmacrab_74736 жыл бұрын
You should put the exclamation mark in the exponent so you’d have n^! Now THAT is what I call hyper.
@norielsylvire40976 жыл бұрын
Hyperfactorial of a negative number is equal to zero, as the exponent gets closer to minus infinity, it gets divided by a larger number, which means each index gets smaller and smaller, and tends to zero. And if you multiply a number by zero you get zero.
@norielsylvire40976 жыл бұрын
Sorry, I didn't explain the infinity thing. Take H(-3) for example. H(-3)=-3^-3*(-3-1)^(-3-1)*(-3-2)^(-3-2)•••=-3^-3*-4^-4*-5^-5••• the exponent doesnt get closer to zero but closer to minus infinity, as it gets subtracted one each time. A negative exponent is the same as 1/the number to that exponent. If the exponent is minus infinity it is the same as 1/infinity which tends to zero. If you multiply by zero, you get zero.
@mayankvats9266 жыл бұрын
Next is hypersupremeover9000megatron factorial 😂. Love your videos btw!!!
@karthikrambhatla74656 жыл бұрын
Crazy.. heard this for the first time. Thank you❤️. But BlackpenRedPen where this hyperfactorial is used
@legendgames1283 жыл бұрын
"He eats a lot of coffee and drinks a lot of sugar." Had me laughing for a while.
@Hailfire086 жыл бұрын
YES DO INFINITE NEGATIVE CONVERGING SUMS - NEGATIVE HYPERFACTORIALS!
@aditidas99786 жыл бұрын
New topic 😊 😊for me.but after i watched this video I did some of the problems on this topic and they seems to be too interesting .thanks,I easily catched the concept right here😊😊😊😊😊😊😊
@perveilov6 жыл бұрын
Learn how a factorial can be such a hypebeast
@shivimish99626 жыл бұрын
I was literally thinking about it yesterday, and you make a video today, wow
@karthikrambhatla74656 жыл бұрын
Where did it came across
@shivimish99626 жыл бұрын
@@karthikrambhatla7465 Just popped up when doing maths
@blackpenredpen6 жыл бұрын
Wow! What class?
@shivimish99626 жыл бұрын
@@blackpenredpen 12th but it was not in the book😂😀
@Spartan111996 жыл бұрын
Really enjoy these videos man!
@ZipplyZane5 жыл бұрын
The natural extension would be for 0^0 = 1, same as 0! = 1. That way you just multiply all the results by one. Therefore, H(0) = 1.
@ahmedshaikha89386 жыл бұрын
Introducing the K-function/Barne’s G-function
@cellina.starfire5 жыл бұрын
Isn’t this just every factorial from n! to 1! multiplied together? Pretty cool!
@nikolamarijanovic62616 жыл бұрын
I'm guessing the negatives would work but it depends if they are even or odd.
@DanDart6 жыл бұрын
Loving that jacket!
@blackpenredpen6 жыл бұрын
Dan Dart thank you!!!
@Gadget6226 жыл бұрын
Judging by the title I was thinking it would be something like: f(n) = n ^ f(n - 1) So if n = 4 then f(4) = 4 ^ 3 ^ 2 ^ 1 = 4 ^ 3 ^ 2 = 4 ^ 9 = 262,144 Following the same pattern, f(5) = 5 ^ 262,144, or roughly 6 * 10 ^ 183,230. And f(6) would be far too stupidly big to comprehend.
@ralfs77626 жыл бұрын
Make more videos about factorials!!
@nietschecrossout5506 жыл бұрын
Is there an Ultrafactorial? like using tetration: U(5)=high5^low5 * 4^4 * 3^3 * ...
@caloz.36566 жыл бұрын
tetration**
@nietschecrossout5506 жыл бұрын
@@caloz.3656 thx, didn't notice it
@caloz.36566 жыл бұрын
@@nietschecrossout550 you're welcome!
@caloz.36566 жыл бұрын
Aden Tate he said tetation.
@legendgames1283 жыл бұрын
Hyper factorial has a lot in common with hyper dashing, there is tremendous horizontal ground covered.
@narmadav40066 жыл бұрын
Pl. Integrate If a>1 then dx /( x^(2) + 2ax + 1 ) is equal to
@harshsrivastava95706 жыл бұрын
It is said that bprp is still hearting people and will continue to do so forever...
@blackpenredpen6 жыл бұрын
Harsh Srivastava Isn't it?
@lilyyy4115 жыл бұрын
"Eats a lot of coffee and DRINKS a lot of sugar" That's how hyper it is
@swenji91133 жыл бұрын
Well if you believe in your formula you don't have to write H(n) in terms of H(n-1) to get H(0). By convention, an empty product (product of zero terms) is equal to the neutral element for the multiplication law, so it is 1. In the same way, an empty sum is by convention equal to 0, which is the neutral element for addition. These conventions ensure that any reccurence formula you will get for your sum or product remains true at 0
@JBaker4526 жыл бұрын
Think a bit about the Q function; if it does not blow your mind then think harder ;-) I have more to say about it later
@angelmendez-rivera3516 жыл бұрын
Anyway great video! Now do superfactorials!
@Gamma_Digamma6 жыл бұрын
Woah, I'm drooling
@MrRyanroberson16 жыл бұрын
Well for negatives actually, due to the recursive, H(n)=H(n+1)/(n+1)^(n+1), and for negatives the n+1 is negative or zero, and you can flip the denominator and get a multiplying chain. H(-5)=H(5)×H(-1) (from odd H to odd H the ± is the same), and now we just need to define H(-1), and since H(0)=H(1)/1, we can understand 0^0 to be 1. This leaves 0^0 H(-1) = H(0), and therefore H(-1) is also 1, since 0^0 is 1
@MrRyanroberson16 жыл бұрын
The whole "from odd H" is wrong, there's a rule but it doesn't resolve itself to me at the moment
@jzanimates23526 жыл бұрын
Hey blackpenredpen. Recently I have been watching dr peyam’s show, and mainly his videos on the half derivative of x and imaginary derivative of x. I would really like to see you try things like half intergrals and imaginary intergrals. Please like if you agree.
@FGj-xj7rd6 жыл бұрын
More like hypersharktorial.
@yrcmurthy83236 жыл бұрын
The thumbnail says it
@alextaunton30992 жыл бұрын
Is there an integral-based formula for a hyperfactorial like there is for a normal factorial (i.e. the pi function for a normal factorial)?
@mike4ty46 жыл бұрын
How about integrating (x^3)/cos(2x) by expressing it with De Jonquiere's Polylogarithm (the Li_s(z) function)? I wanna see you labor and sweat with tears, see you have to use the full rainbow of pens, and/or see to it that they run out of ink in the middle of a derivation, and see you to have to recruit extra blackboards! I want drama! :g:
@Rundas694206 жыл бұрын
Even here mah boi the gamma function is present. Because H(z) can be defined as follows: H(z)=K(z+1) where K is the, oh wonder, K-Function. And K(z) is defined as K(z)=(2pi)^((1-z)/2)*exp[(z choose 2) + integral from 0 to (z-1) of ln(Γ(t+1))dt]. Boi Edit: So you just need to plug in z=z+1 to get a definition for H(z) in terms of the Gamma-Function. I'm using z here because you can plug everything, even complex numbers, into the Gamma-Function.
@martinianofaure42706 жыл бұрын
You can't have H(-1). Following that argument, H(0)=0^0*H(-1), and since 0^0 is undetermined, H(-1) is undetermined too.
@rafaeldubois81926 жыл бұрын
Should try ¡n! Instead of H(n)
@blackpenredpen6 жыл бұрын
Rafael Dubois Good idea
@Tcrrxzz9 ай бұрын
H(-1) approaches infinity
@JLConawayII6 жыл бұрын
We need a hypergamma function!
@alan2here6 жыл бұрын
Not the next hyper-operation up? Lets try a few ranks. F(0, 4) = 5 F(1, 4) = 10 F(2, 4) = 24 F(3, 3) = 9 or maybe = ^{3, 2, 1} = elements of {9, 8, 1}
@lilyyy4115 жыл бұрын
my favorite note is H flat
@maxwibert6 жыл бұрын
Is there such a thing as a hyper-gamma function? By that I mean an analytic extension of the hyperfactorial to some well behaved subset of R or C?
@shivammalluri64036 жыл бұрын
Why don't you try the integral of the tetration of sin(x)
@blackpenredpen6 жыл бұрын
Shivam Malluri ok
@shivammalluri64036 жыл бұрын
@@blackpenredpen great👍
@Bodyknock6 жыл бұрын
I’m trying to think of where hyperfactorial would actually come up in a real life combinatorics problem but can’t think of one and didn’t find anything off-hand on Google. (Comparatively factorial n! is extremely useful and subfactorial !n is the number of derangements of n objects). I’m wondering if this came up in the course of a real world calculation or combinatorial proof or if it was just a function someone thought up that just seemed like it might have some interesting numerical properties.
@tientranquang08073 жыл бұрын
Wait, isn't H(n)=[(n!)^n]/[(n-k)!] ? (k
@dwaraganathanrengasamy61696 жыл бұрын
lim n -> -1 H(n)=1 where we approach from right. Is it right...?
@angelmendez-rivera3516 жыл бұрын
Dwaraganathan Rengasamy Yes
@michalnemecek35756 жыл бұрын
I have a different formula for the hyperfactorial. assume n = 5 for this example Step 1: H(5) = 5^5*4^4*3^3*2^2*1^1 Step 2 (still equal to H(5), but I won't put it there because of the width of a space): 5*5*5*5*5* 4*4*4*4* 3*3*3* 2*2* 1 Step 3: first column is 5!/0!, second one is 5!/1!, third is 5!/2! and so on... Step 4: H(5) = (5!/0!)*(5!/1!)*(5!/2!)*(5!/3!)*(5!/4!) Step 5 (again, not writing H(5)=): 5 Π 5!/(k-1)! k=1 Step 6: replace 5 with n n H(n) = Π n!/(k-1)! k=1 EDIT: in step 6 I absolutely had to write H(n)=
@toddbiesel42886 жыл бұрын
H(5) = 86,400,000. Also, how about using ¡ as a factorial symbol?
@manuelepedicillo8646 жыл бұрын
1:54 what happened?
@rchishray78146 жыл бұрын
Write it as !!n instead of H(n)
@jorgelenny476 жыл бұрын
So 0 to the 0th power is 1... Intresting as bronzes
@bernhard52956 жыл бұрын
Found a way to express hyperfac through superfac H(n)= n!^n/S(n-1). S(n)= 1!*2!*...*n!
@vp_arth3 жыл бұрын
hyperfactorial is about hype
@Ready4Music6 жыл бұрын
We have factorial, hyperfactorial, and… Hold up… Superfactorial??? 🤔😮 Me: Calling Superman for explaining this type of factorial. 😁
@davidugono37275 жыл бұрын
There's also subfactorial.
@rafciopranks35706 жыл бұрын
Check out Foias Ewing constant.
@Theraot6 жыл бұрын
Now I wonder if there is a factorial for each version of street fighter.
Can you make a video with hyperfactorial arrow notation please
@welltypedwitch6 жыл бұрын
So... What exactly would you use this for? Apart from H(5) of course
@alexhenson3 жыл бұрын
H(n)=(n!)^n *drops pen on the ground*
@JoshuaHillerup6 жыл бұрын
More evidence that in natural numbers 0^0 is 1. It's in say real numbers where it becomes undefined.
@STEVE_K_J6 жыл бұрын
So we have factorial of 1/2, subfactorials of 1/2 but what about the hyperfactorial and superfactorial of 1/2 ?!
@paulthompson96686 жыл бұрын
Analytic continuation of hyperfactorial?
@Larry6402 жыл бұрын
I'm curious as to what the use of this might be, as basically any value n greater than 10 is already incomprehensibly large. As in near universe-breaking
@shre66196 жыл бұрын
We need hyperfactorial of i
@jainpriyanka149786 жыл бұрын
Sir i think we can do its write .....
@shubham19996 жыл бұрын
Can you tell what is method of Multipliers in linear PDE?
@benedettopagano35363 жыл бұрын
Can't we all just agree that 0^0 should be 1?
@Brianlotito6 жыл бұрын
I think that we can do hyperfactorial of a negative number. How? Idk, I just think that it is posibble
@JTX80006 жыл бұрын
HYPER GAMMA FUNCTION
@aLumpOfParticles6 жыл бұрын
How about H(1/2)? 😁😁
@michaelgandil18974 жыл бұрын
Isn't the conclusion in the end mean that 0^0 equals 1?
@cotasamnemano3665 жыл бұрын
H(-1)=undefined
@Math-bz8bw6 жыл бұрын
Hi. Can you write H (n) such as integral
@AKA-f7p10 ай бұрын
H(-1)=1
@fCauneau6 жыл бұрын
Seems that H(n)=n!^n/P(j!) for j=1to(n-1), no ? sorry : I wrote P for "product"
@maxwibert6 жыл бұрын
6 weeks = 10! seconds, as a matter of fact
@caloz.36566 жыл бұрын
drinks a lot of coffee, eat a lot of sugar...
@blacker44046 жыл бұрын
What about H(1/2)?
@anilsharma-ev2my4 жыл бұрын
Are you able to make an app over it ??
@saxbend6 жыл бұрын
So another definition would be n!^n ÷ ( (n-1)! (n-2)! (n-3)! ...2! 1!)