Hyperfactorial introduction

  Рет қаралды 37,597

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 255
@blackpenredpen
@blackpenredpen 6 жыл бұрын
0^0=1 by convention in hyperfactorial as well. : ) Just like in power series, see this video kzbin.info/www/bejne/qHvMnWtrfK14r8U
@seroujghazarian6343
@seroujghazarian6343 6 жыл бұрын
I thought 0^0 was undefined
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Serouj Ghazarian 0^0 is an indeterminate form, which is why limits with this form can equal many different values and exist. This is different from the expression not being defined. If a limit ever is evaluated to equal an undefined arithmetic or algebraic expression, then the limit does not exist. There is a much more rigorous way to state this, but I’m not going to bother with on a short KZbin comment. Needless to say, there is much evidence that suggests that 0^0 is a necessary convention in mathematics, and in most fields of study, 0^0 = 1 is assumed even if it is unprovable.
@seroujghazarian6343
@seroujghazarian6343 6 жыл бұрын
@@angelmendez-rivera351 exactly! LIMITS! you know why 0^0 is inderterminate? Because it takes you straight to 0×infinity (lim x->0+ e^(xlnx)) and I'm pretty sure that ln(0) is undefined. Although, if we think like that, 0 itself is undefined
@seroujghazarian6343
@seroujghazarian6343 6 жыл бұрын
@@angelmendez-rivera351 also, while you're at it, why don't you take sin(0)/0=1, (cos(0)-1)/0=0, log(b=1)(1)=1 (actually, the last one can be any real number)
@lucazara9137
@lucazara9137 6 жыл бұрын
I found this formula for negative hyperfactorial H(-n) = (-1)^(n+1)*(n-1)^(n-1)*H(-n+1)
@kingbeauregard
@kingbeauregard 6 жыл бұрын
Cool jacket! Did you start a motorcycle gang for mathematicians? You could call yourselves The Unbounded Functions.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
lol, that will be cool!
@emethirsch7107
@emethirsch7107 6 жыл бұрын
Speed Without Limit!
@Uni-Coder
@Uni-Coder 5 жыл бұрын
Painted with black pen
@blazedinfernape886
@blazedinfernape886 6 жыл бұрын
5!= number of seconds in 2 minutes. H(5)=number of milliseconds in a day. Wow that escalated quickly.
@Gold161803
@Gold161803 6 жыл бұрын
I think 10! is the number of seconds in six weeks
@blazedinfernape886
@blazedinfernape886 6 жыл бұрын
@@Gold161803 yup! Numberphile did a video on it.
@stewartzayat7526
@stewartzayat7526 4 жыл бұрын
And what is H(10)?
@brennanherring9059
@brennanherring9059 4 жыл бұрын
@@stewartzayat7526 Number of Planck times in 11.63 seconds.
@SeriousApache
@SeriousApache 6 жыл бұрын
I think with enough brute force it is possible to do H(-1)
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
RUSapache Read my comment above, where I derived a symmetry formula for all integers n, extending H for negative inputs, and I also demonstrated that every half-integers is a root of H(x) given this definition of H.
@Kitulous
@Kitulous 6 жыл бұрын
well, if we go from n to 1 so it looks like this: 1 П k^k k=n Then it would work, actually. H(-1) in this case is (-1)^(-1)*0^0*1^1 We got a 0^0 problem here. But if to fix it knowing that lim x->0 (x^x) =1, then it's (-1)^(-1)*1*1 = -1*1*1 = -1. Seems legit? I think it does.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Craftist Except you are not allowed to do that, and that is not the definition of the hyper-factorial. In particular, if you have a product over an ordered sequence, then the indexing is not allowed to happen over a variable boundary if there is no function over the boundary and if the upper boundary is a fixed constant which is lower. By your argument, H(n) = 0 everywhere except for H(1) = 1, which is absurd. No, we simply define H via the recursion formula, and if the value H(x) exists for some x, then it must satisfy the recursion. Then we say that H(0) = 1 by the recursion, and if we use a limit or adopt the convention 0^0 = 1 - and Let me tell you that there is far more reason to adopt than to not adopt it - then we can prove easily that H(-1) by the recursion. However, H(n) for n < 0 could not be calculated using products as you tried it because products are undefined for negative integers. Product and summation notation are a pain in the ass and they only add obstacles unnecessarily to the problem, even if they are more intuitive.
@MrRyanroberson1
@MrRyanroberson1 6 жыл бұрын
Easy. H(1)=1=H(0)×1, so H(0)=0^0= conventionally 1. Then H(0)=0^0 × H(-1)=H(-1), and from there H(-n)=H(n)×H(-1)×-1^(f), and the H(-1) goes away, being equal to 1. f must be worked out to agree with the parity of H(-n), I'm sure there's a closed form. The reason H(n) appears is because on the left side it gets multiplied by values ^ negatives, and so you can see that (-2)^(-2)=1/2^2, with the only difference being a factor of -1 for odd bases, and 1/2^2 on the left becomes 2^2 on the right
@williamallen9145
@williamallen9145 6 жыл бұрын
Once upon a time there was a factorial, he drinks a lot of coffee and eats a lot of sugar, he is... HYPER. Haha
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Pervy Sage lolll
@kohwenxu
@kohwenxu 4 жыл бұрын
XD
@gouravmadhwal5548
@gouravmadhwal5548 6 жыл бұрын
Plz integrate ln(ln(ln(lnx)))
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Gourav Madhwal Cannot be done in terms of elementary functions, but...
@DiegoMathemagician
@DiegoMathemagician 6 жыл бұрын
extreme integration math 1052 xD
@MichaelProds99
@MichaelProds99 6 жыл бұрын
@@DiegoMathemagician just put the horseshoe dude
@ZelForShort
@ZelForShort 6 жыл бұрын
Isn't that horseshoe math?
@gouravmadhwal5548
@gouravmadhwal5548 6 жыл бұрын
@@ZelForShort yes it is
@2kreskimatmy
@2kreskimatmy 6 жыл бұрын
0^0=1 :thinking:
@IQuick143cz
@IQuick143cz 6 жыл бұрын
Is there any real continuation of the hyperfactorial? Similar to how we have the Gamma function for the regular factorial.
@vincentwilliamrodriguez3572
@vincentwilliamrodriguez3572 6 жыл бұрын
hyperfactoreos
@Dreamprism
@Dreamprism 6 жыл бұрын
Vincent William Rodriguez sounds tasty
@xusui_2830
@xusui_2830 6 жыл бұрын
Ever since I started watching you, you've reignited my passion for mathematics. Thank you :)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
xusui _ : )
@NonTwinBrothers
@NonTwinBrothers 6 жыл бұрын
these thumbnails mannnn
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: ))))))
@yrcmurthy8323
@yrcmurthy8323 6 жыл бұрын
Superb right ?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
@@yrcmurthy8323 thanks!
@yrcmurthy8323
@yrcmurthy8323 6 жыл бұрын
*@blackpenredpen No need to say thanks sir,. You deserve an 👏 applause*
@alex_ramjiawan
@alex_ramjiawan Жыл бұрын
If we reverse the input to n and n+1, etc, and input negative numbers, it equals (H(n))^-1.
@AndDiracisHisProphet
@AndDiracisHisProphet 6 жыл бұрын
so the hyperfactorial of 0 represents the number of milliseconds in one millisecond. also, better notation would be "n?"
@blackpenredpen
@blackpenredpen 6 жыл бұрын
That's so much better!
@AndDiracisHisProphet
@AndDiracisHisProphet 6 жыл бұрын
Isn't it?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
AndDiracisHisProphet it is! Hmmm, what should I draw next? I did fish, shark, what's next??
@stealthpilot2935
@stealthpilot2935 6 жыл бұрын
@@blackpenredpen a dolphin
@AndDiracisHisProphet
@AndDiracisHisProphet 6 жыл бұрын
Octopus?
@yaboylemon9578
@yaboylemon9578 6 жыл бұрын
Really digging the new fish/shark themed thumbnails.
@cfgauss71
@cfgauss71 6 жыл бұрын
Hyperfactorial is cool...BUT...it is not as cool as your jacket, isn't it?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Arthur Clay lol thank you!!
@Zafarrrrrrrrr
@Zafarrrrrrrrr 6 жыл бұрын
hyperfactoreos :D
@hyperupcall
@hyperupcall 6 жыл бұрын
That's a slick jacket! Love it!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Lightning Fast thank you!!!
@General12th
@General12th 6 жыл бұрын
I just started the video. I can't wait to learn about hyperfactoreos!
@General12th
@General12th 6 жыл бұрын
H(0) = 0^0 * H(-1) 1 = 0^0 * H(-1) 0^0 is undefined, so H(-1) is undefined. The question, then, is what about noninteger values of n? What about complex values of n?
@ffggddss
@ffggddss 6 жыл бұрын
When computing H(5), you can group the factors as follows: H(5) = 5⁵·4⁴·3³·2²·1¹ [2² = 4, so put it in with the 4's] = 5⁵·4⁵·3³ = 20⁵·27 = 3,200,000·27 = 86,400,000 Fred
@krisbarc4927
@krisbarc4927 6 жыл бұрын
Nice video. What about "tetrafactorial" : T(n) = n^(n-1)^(n-2)^...^1 ?
@Someniatko
@Someniatko 5 жыл бұрын
^...^
@NoahmassMulti
@NoahmassMulti Жыл бұрын
That would be 2^10^44 if T(5) was the input
@NoahmassMulti
@NoahmassMulti Жыл бұрын
Which is around 10^10^43.6
@nikodempatrycjuszswiercz4064
@nikodempatrycjuszswiercz4064 6 жыл бұрын
There's another formula for it I've found (using math not google): H(n) = n!/0! * n!/1! * n!/2! * ... * n!/(n-2)! * n!/(n-1)!
@mr_1wr572
@mr_1wr572 6 жыл бұрын
Cool!
@nikodempatrycjuszswiercz4064
@nikodempatrycjuszswiercz4064 6 жыл бұрын
This one actually uses regular factorials showing the „hyperness” of the hyperfactorial
@Cloud88Skywalker
@Cloud88Skywalker 6 жыл бұрын
@@nikodempatrycjuszswiercz4064 This is exactly what I thought he was going to do when he says he's going to rearrange. I did, and you can compact the formula to: *H(n) = (n!)^n / sf(n-1).* sf(n) is the superfactorial, I just looked it up, and it's sf(n) = n! · (n-1)! · (n-2)! · ... · 2! · 1!
@plasmacrab_7473
@plasmacrab_7473 6 жыл бұрын
You should put the exclamation mark in the exponent so you’d have n^! Now THAT is what I call hyper.
@norielsylvire4097
@norielsylvire4097 6 жыл бұрын
Hyperfactorial of a negative number is equal to zero, as the exponent gets closer to minus infinity, it gets divided by a larger number, which means each index gets smaller and smaller, and tends to zero. And if you multiply a number by zero you get zero.
@norielsylvire4097
@norielsylvire4097 6 жыл бұрын
Sorry, I didn't explain the infinity thing. Take H(-3) for example. H(-3)=-3^-3*(-3-1)^(-3-1)*(-3-2)^(-3-2)•••=-3^-3*-4^-4*-5^-5••• the exponent doesnt get closer to zero but closer to minus infinity, as it gets subtracted one each time. A negative exponent is the same as 1/the number to that exponent. If the exponent is minus infinity it is the same as 1/infinity which tends to zero. If you multiply by zero, you get zero.
@mayankvats926
@mayankvats926 6 жыл бұрын
Next is hypersupremeover9000megatron factorial 😂. Love your videos btw!!!
@karthikrambhatla7465
@karthikrambhatla7465 6 жыл бұрын
Crazy.. heard this for the first time. Thank you❤️. But BlackpenRedPen where this hyperfactorial is used
@legendgames128
@legendgames128 3 жыл бұрын
"He eats a lot of coffee and drinks a lot of sugar." Had me laughing for a while.
@Hailfire08
@Hailfire08 6 жыл бұрын
YES DO INFINITE NEGATIVE CONVERGING SUMS - NEGATIVE HYPERFACTORIALS!
@aditidas9978
@aditidas9978 6 жыл бұрын
New topic 😊 😊for me.but after i watched this video I did some of the problems on this topic and they seems to be too interesting .thanks,I easily catched the concept right here😊😊😊😊😊😊😊
@perveilov
@perveilov 6 жыл бұрын
Learn how a factorial can be such a hypebeast
@shivimish9962
@shivimish9962 6 жыл бұрын
I was literally thinking about it yesterday, and you make a video today, wow
@karthikrambhatla7465
@karthikrambhatla7465 6 жыл бұрын
Where did it came across
@shivimish9962
@shivimish9962 6 жыл бұрын
@@karthikrambhatla7465 Just popped up when doing maths
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Wow! What class?
@shivimish9962
@shivimish9962 6 жыл бұрын
@@blackpenredpen 12th but it was not in the book😂😀
@Spartan11199
@Spartan11199 6 жыл бұрын
Really enjoy these videos man!
@ZipplyZane
@ZipplyZane 5 жыл бұрын
The natural extension would be for 0^0 = 1, same as 0! = 1. That way you just multiply all the results by one. Therefore, H(0) = 1.
@ahmedshaikha8938
@ahmedshaikha8938 6 жыл бұрын
Introducing the K-function/Barne’s G-function
@cellina.starfire
@cellina.starfire 5 жыл бұрын
Isn’t this just every factorial from n! to 1! multiplied together? Pretty cool!
@nikolamarijanovic6261
@nikolamarijanovic6261 6 жыл бұрын
I'm guessing the negatives would work but it depends if they are even or odd.
@DanDart
@DanDart 6 жыл бұрын
Loving that jacket!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Dan Dart thank you!!!
@Gadget622
@Gadget622 6 жыл бұрын
Judging by the title I was thinking it would be something like: f(n) = n ^ f(n - 1) So if n = 4 then f(4) = 4 ^ 3 ^ 2 ^ 1 = 4 ^ 3 ^ 2 = 4 ^ 9 = 262,144 Following the same pattern, f(5) = 5 ^ 262,144, or roughly 6 * 10 ^ 183,230. And f(6) would be far too stupidly big to comprehend.
@ralfs7762
@ralfs7762 6 жыл бұрын
Make more videos about factorials!!
@nietschecrossout550
@nietschecrossout550 6 жыл бұрын
Is there an Ultrafactorial? like using tetration: U(5)=high5^low5 * 4^4 * 3^3 * ...
@caloz.3656
@caloz.3656 6 жыл бұрын
tetration**
@nietschecrossout550
@nietschecrossout550 6 жыл бұрын
@@caloz.3656 thx, didn't notice it
@caloz.3656
@caloz.3656 6 жыл бұрын
@@nietschecrossout550 you're welcome!
@caloz.3656
@caloz.3656 6 жыл бұрын
Aden Tate he said tetation.
@legendgames128
@legendgames128 3 жыл бұрын
Hyper factorial has a lot in common with hyper dashing, there is tremendous horizontal ground covered.
@narmadav4006
@narmadav4006 6 жыл бұрын
Pl. Integrate If a>1 then dx /( x^(2) + 2ax + 1 ) is equal to
@harshsrivastava9570
@harshsrivastava9570 6 жыл бұрын
It is said that bprp is still hearting people and will continue to do so forever...
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Harsh Srivastava Isn't it?
@lilyyy411
@lilyyy411 5 жыл бұрын
"Eats a lot of coffee and DRINKS a lot of sugar" That's how hyper it is
@swenji9113
@swenji9113 3 жыл бұрын
Well if you believe in your formula you don't have to write H(n) in terms of H(n-1) to get H(0). By convention, an empty product (product of zero terms) is equal to the neutral element for the multiplication law, so it is 1. In the same way, an empty sum is by convention equal to 0, which is the neutral element for addition. These conventions ensure that any reccurence formula you will get for your sum or product remains true at 0
@JBaker452
@JBaker452 6 жыл бұрын
Think a bit about the Q function; if it does not blow your mind then think harder ;-) I have more to say about it later
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Anyway great video! Now do superfactorials!
@Gamma_Digamma
@Gamma_Digamma 6 жыл бұрын
Woah, I'm drooling
@MrRyanroberson1
@MrRyanroberson1 6 жыл бұрын
Well for negatives actually, due to the recursive, H(n)=H(n+1)/(n+1)^(n+1), and for negatives the n+1 is negative or zero, and you can flip the denominator and get a multiplying chain. H(-5)=H(5)×H(-1) (from odd H to odd H the ± is the same), and now we just need to define H(-1), and since H(0)=H(1)/1, we can understand 0^0 to be 1. This leaves 0^0 H(-1) = H(0), and therefore H(-1) is also 1, since 0^0 is 1
@MrRyanroberson1
@MrRyanroberson1 6 жыл бұрын
The whole "from odd H" is wrong, there's a rule but it doesn't resolve itself to me at the moment
@jzanimates2352
@jzanimates2352 6 жыл бұрын
Hey blackpenredpen. Recently I have been watching dr peyam’s show, and mainly his videos on the half derivative of x and imaginary derivative of x. I would really like to see you try things like half intergrals and imaginary intergrals. Please like if you agree.
@FGj-xj7rd
@FGj-xj7rd 6 жыл бұрын
More like hypersharktorial.
@yrcmurthy8323
@yrcmurthy8323 6 жыл бұрын
The thumbnail says it
@alextaunton3099
@alextaunton3099 2 жыл бұрын
Is there an integral-based formula for a hyperfactorial like there is for a normal factorial (i.e. the pi function for a normal factorial)?
@mike4ty4
@mike4ty4 6 жыл бұрын
How about integrating (x^3)/cos(2x) by expressing it with De Jonquiere's Polylogarithm (the Li_s(z) function)? I wanna see you labor and sweat with tears, see you have to use the full rainbow of pens, and/or see to it that they run out of ink in the middle of a derivation, and see you to have to recruit extra blackboards! I want drama! :g:
@Rundas69420
@Rundas69420 6 жыл бұрын
Even here mah boi the gamma function is present. Because H(z) can be defined as follows: H(z)=K(z+1) where K is the, oh wonder, K-Function. And K(z) is defined as K(z)=(2pi)^((1-z)/2)*exp[(z choose 2) + integral from 0 to (z-1) of ln(Γ(t+1))dt]. Boi Edit: So you just need to plug in z=z+1 to get a definition for H(z) in terms of the Gamma-Function. I'm using z here because you can plug everything, even complex numbers, into the Gamma-Function.
@martinianofaure4270
@martinianofaure4270 6 жыл бұрын
You can't have H(-1). Following that argument, H(0)=0^0*H(-1), and since 0^0 is undetermined, H(-1) is undetermined too.
@rafaeldubois8192
@rafaeldubois8192 6 жыл бұрын
Should try ¡n! Instead of H(n)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Rafael Dubois Good idea
@Tcrrxzz
@Tcrrxzz 9 ай бұрын
H(-1) approaches infinity
@JLConawayII
@JLConawayII 6 жыл бұрын
We need a hypergamma function!
@alan2here
@alan2here 6 жыл бұрын
Not the next hyper-operation up? Lets try a few ranks. F(0, 4) = 5 F(1, 4) = 10 F(2, 4) = 24 F(3, 3) = 9 or maybe = ^{3, 2, 1} = elements of {9, 8, 1}
@lilyyy411
@lilyyy411 5 жыл бұрын
my favorite note is H flat
@maxwibert
@maxwibert 6 жыл бұрын
Is there such a thing as a hyper-gamma function? By that I mean an analytic extension of the hyperfactorial to some well behaved subset of R or C?
@shivammalluri6403
@shivammalluri6403 6 жыл бұрын
Why don't you try the integral of the tetration of sin(x)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Shivam Malluri ok
@shivammalluri6403
@shivammalluri6403 6 жыл бұрын
@@blackpenredpen great👍
@Bodyknock
@Bodyknock 6 жыл бұрын
I’m trying to think of where hyperfactorial would actually come up in a real life combinatorics problem but can’t think of one and didn’t find anything off-hand on Google. (Comparatively factorial n! is extremely useful and subfactorial !n is the number of derangements of n objects). I’m wondering if this came up in the course of a real world calculation or combinatorial proof or if it was just a function someone thought up that just seemed like it might have some interesting numerical properties.
@tientranquang0807
@tientranquang0807 3 жыл бұрын
Wait, isn't H(n)=[(n!)^n]/[(n-k)!] ? (k
@dwaraganathanrengasamy6169
@dwaraganathanrengasamy6169 6 жыл бұрын
lim n -> -1 H(n)=1 where we approach from right. Is it right...?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Dwaraganathan Rengasamy Yes
@michalnemecek3575
@michalnemecek3575 6 жыл бұрын
I have a different formula for the hyperfactorial. assume n = 5 for this example Step 1: H(5) = 5^5*4^4*3^3*2^2*1^1 Step 2 (still equal to H(5), but I won't put it there because of the width of a space): 5*5*5*5*5* 4*4*4*4* 3*3*3* 2*2* 1 Step 3: first column is 5!/0!, second one is 5!/1!, third is 5!/2! and so on... Step 4: H(5) = (5!/0!)*(5!/1!)*(5!/2!)*(5!/3!)*(5!/4!) Step 5 (again, not writing H(5)=): 5 Π 5!/(k-1)! k=1 Step 6: replace 5 with n n H(n) = Π n!/(k-1)! k=1 EDIT: in step 6 I absolutely had to write H(n)=
@toddbiesel4288
@toddbiesel4288 6 жыл бұрын
H(5) = 86,400,000. Also, how about using ¡ as a factorial symbol?
@manuelepedicillo864
@manuelepedicillo864 6 жыл бұрын
1:54 what happened?
@rchishray7814
@rchishray7814 6 жыл бұрын
Write it as !!n instead of H(n)
@jorgelenny47
@jorgelenny47 6 жыл бұрын
So 0 to the 0th power is 1... Intresting as bronzes
@bernhard5295
@bernhard5295 6 жыл бұрын
Found a way to express hyperfac through superfac H(n)= n!^n/S(n-1). S(n)= 1!*2!*...*n!
@vp_arth
@vp_arth 3 жыл бұрын
hyperfactorial is about hype
@Ready4Music
@Ready4Music 6 жыл бұрын
We have factorial, hyperfactorial, and… Hold up… Superfactorial??? 🤔😮 Me: Calling Superman for explaining this type of factorial. 😁
@davidugono3727
@davidugono3727 5 жыл бұрын
There's also subfactorial.
@rafciopranks3570
@rafciopranks3570 6 жыл бұрын
Check out Foias Ewing constant.
@Theraot
@Theraot 6 жыл бұрын
Now I wonder if there is a factorial for each version of street fighter.
@Theraot
@Theraot 6 жыл бұрын
hyperfactorial superfactorial turbofactorial alphafactorial arcadeeditionfactorial ...
@flyingpigeon2812
@flyingpigeon2812 6 жыл бұрын
Im lovin the smilie's 😂😂😂
@yassinenacif418
@yassinenacif418 4 жыл бұрын
Explostion in my mind : 5:26
6 жыл бұрын
Can you make a video with hyperfactorial arrow notation please
@welltypedwitch
@welltypedwitch 6 жыл бұрын
So... What exactly would you use this for? Apart from H(5) of course
@alexhenson
@alexhenson 3 жыл бұрын
H(n)=(n!)^n *drops pen on the ground*
@JoshuaHillerup
@JoshuaHillerup 6 жыл бұрын
More evidence that in natural numbers 0^0 is 1. It's in say real numbers where it becomes undefined.
@STEVE_K_J
@STEVE_K_J 6 жыл бұрын
So we have factorial of 1/2, subfactorials of 1/2 but what about the hyperfactorial and superfactorial of 1/2 ?!
@paulthompson9668
@paulthompson9668 6 жыл бұрын
Analytic continuation of hyperfactorial?
@Larry640
@Larry640 2 жыл бұрын
I'm curious as to what the use of this might be, as basically any value n greater than 10 is already incomprehensibly large. As in near universe-breaking
@shre6619
@shre6619 6 жыл бұрын
We need hyperfactorial of i
@jainpriyanka14978
@jainpriyanka14978 6 жыл бұрын
Sir i think we can do its write .....
@shubham1999
@shubham1999 6 жыл бұрын
Can you tell what is method of Multipliers in linear PDE?
@benedettopagano3536
@benedettopagano3536 3 жыл бұрын
Can't we all just agree that 0^0 should be 1?
@Brianlotito
@Brianlotito 6 жыл бұрын
I think that we can do hyperfactorial of a negative number. How? Idk, I just think that it is posibble
@JTX8000
@JTX8000 6 жыл бұрын
HYPER GAMMA FUNCTION
@aLumpOfParticles
@aLumpOfParticles 6 жыл бұрын
How about H(1/2)? 😁😁
@michaelgandil1897
@michaelgandil1897 4 жыл бұрын
Isn't the conclusion in the end mean that 0^0 equals 1?
@cotasamnemano366
@cotasamnemano366 5 жыл бұрын
H(-1)=undefined
@Math-bz8bw
@Math-bz8bw 6 жыл бұрын
Hi. Can you write H (n) such as integral
@AKA-f7p
@AKA-f7p 10 ай бұрын
H(-1)=1
@fCauneau
@fCauneau 6 жыл бұрын
Seems that H(n)=n!^n/P(j!) for j=1to(n-1), no ? sorry : I wrote P for "product"
@maxwibert
@maxwibert 6 жыл бұрын
6 weeks = 10! seconds, as a matter of fact
@caloz.3656
@caloz.3656 6 жыл бұрын
drinks a lot of coffee, eat a lot of sugar...
@blacker4404
@blacker4404 6 жыл бұрын
What about H(1/2)?
@anilsharma-ev2my
@anilsharma-ev2my 4 жыл бұрын
Are you able to make an app over it ??
@saxbend
@saxbend 6 жыл бұрын
So another definition would be n!^n ÷ ( (n-1)! (n-2)! (n-3)! ...2! 1!)
Arrangements and Derangements with Repetition
7:26
blackpenredpen
Рет қаралды 12 М.
7 factorials you probably didn't know
12:59
blackpenredpen
Рет қаралды 402 М.
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 81 МЛН
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 61 МЛН
ЛУЧШИЙ ФОКУС + секрет! #shorts
00:12
Роман Magic
Рет қаралды 38 МЛН
Человек паук уже не тот
00:32
Miracle
Рет қаралды 4,3 МЛН
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
Big Factorials - Numberphile
12:27
Numberphile
Рет қаралды 388 М.
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,2 МЛН
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 345 М.
123 SECRETS In Adventure Time
19:59
Toonify
Рет қаралды 369 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
The unexpected probability result confusing everyone
17:24
Stand-up Maths
Рет қаралды 776 М.
I Learned How to Divide by Zero (Don't Tell Your Teacher)
7:36
BriTheMathGuy
Рет қаралды 1,2 МЛН
what is i factorial?
7:56
blackpenredpen
Рет қаралды 313 М.
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 81 МЛН