Distributions 2 | Test Functions

  Рет қаралды 33,362

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 41
@MikeMagTech
@MikeMagTech Жыл бұрын
Thank you. Your clear, detailed, and direct explanations make complex subjects easily accessible. As you know, in math explanations are everything. So many teachers lack the ability, or the willingness, to explain subjects clearly, and often omit critical details.
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Glad it was helpful! :) And thanks for your support!
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Thanks for the quick response in the comments. I had some confusing typos in this video, which are now repaired :) Thank you very much!
@brazni
@brazni 4 жыл бұрын
Hi really like your videos, I just wanted to say in your playlist on distributions you seemed to have added part 4 twice and forgotten part 3. cheers
@ysun0
@ysun0 4 жыл бұрын
Thanks for continuing to make videos! They are great!
@aquamanGR
@aquamanGR 4 жыл бұрын
Thanks for this! I just completed your very nice series on Measure theory - how about a few videos on the basics of Martingales! (in case you are looking for ideas on what to discuss next). Thanks again!
@mattetor6726
@mattetor6726 4 жыл бұрын
Yes that would be awesome. I want to learn more about stocastic claculus at some point :)
@morbidmanatee5550
@morbidmanatee5550 4 жыл бұрын
Interesting. Look forward to the next video!
@mohamedaymanerrahmouni
@mohamedaymanerrahmouni 4 жыл бұрын
Thanks for your efforts! we appreciate your work =)
@intensivemathematics5943
@intensivemathematics5943 3 жыл бұрын
Very useful video! Thanks! My research is related to distribution and I learn a lot from your videos!
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Thank you :)
@MagicBoterham
@MagicBoterham 2 жыл бұрын
At 6:23 "because we want to have a closed subset of R^n, we have to add the closure above" then a line is drawn above, does this overline indicate that the subset is closed?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
It denotes the closure. I have video in my manifolds series about this.
@MagicBoterham
@MagicBoterham 2 жыл бұрын
@@brightsideofmaths Thanks for the quick reply, I like the infinite scrolling whiteboard a lot and the explanations are really clear. In the example b at 5:16 you have `0 for ||x||≥1and exp(1/(1-||x||²)) for ||x||1 and exp(1/(1-||x||²)) for ||x||≤1` to make the support closed?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@MagicBoterham You are not allowed to put 1 into exp(1/(1-||x||²)) :)
@MagicBoterham
@MagicBoterham 2 жыл бұрын
​@@brightsideofmaths Good point. From Wikipedia: some sets are neither open nor closed, for instance the half-open interval [0,1) in the real numbers. en.wikipedia.org/wiki/Closed_set#Examples_of_closed_sets From the topological definition of a closed set "In a topological space, a closed set can be defined as a set which contains all its limit points." I would say that the function has an open support, as its limit point, 1, is not contained in the set.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@@MagicBoterham By definition, the support is always closed. That says the line above the set :)
@apostoloskountouris5144
@apostoloskountouris5144 4 жыл бұрын
Hello! thank you for these excellent videos, they make the topic of distributions a lot more accessible ! Just a quick question... for me it is not self-evident that we can have a function infinite differentiable and 0 outside some bounded interval. I cannot see how it can be smooth if it becomes 0 (so to speak instantaneously) at some point. The existence of test functions seems counter-intuitive ): Do you have an idea where one should look to get some more insight on this ? Where could I find some examples of test functions other that exp ( -1 / 1 - x^2) ?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
I will make a whole video about the construction of such functions.
@MrOvipare
@MrOvipare 3 жыл бұрын
You define D(Phi) as the space of test functions, but later you use D^alpha as an kind of "generalized differential operator". Is this a valid interpretation?
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Of course, these are different Ds. D^alpha is a differential operator and the D(R^n) is the space of test functions.
@weirdo-jw9kc
@weirdo-jw9kc 3 жыл бұрын
Just to be clear Infinitely differentiable functions with compact support forms sobolev space right. I have read about this somewhere.
@HPTopoG
@HPTopoG 3 жыл бұрын
The compactly supported smooth functions form a small (meager) SUBSPACE of the Sobolev spaces. Sobolev spaces themselves are defined by the notion of a “weak” derivative i.e. whether you can use the integration by parts formula on a function and get an integrable function back out as the weak derivative.
@jacobvandijk6525
@jacobvandijk6525 4 жыл бұрын
Oops, didn't expect this one on KZbin ;-)
@张博南
@张博南 4 жыл бұрын
I wonder if here the compact means just the bold and closed?
@beastgames1234
@beastgames1234 3 жыл бұрын
Yes, in R^n compactness is equivalent to closed and bounded
@blankino-1824
@blankino-1824 4 жыл бұрын
This looks like an awesome video, but it got me a bit confused. What are the prerequisite topics I would have to know in order to fully understand this? Thanks in advance!
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
You need a good knowledge of real analysis and maybe some things about partial differential equations.
@blankino-1824
@blankino-1824 4 жыл бұрын
@@brightsideofmaths Thank you! I'll be back in a few years then lol
@jesusvaldes9957
@jesusvaldes9957 4 жыл бұрын
Awesome video!! any book that you recommend for this topic?
@mattetor6726
@mattetor6726 4 жыл бұрын
Iva started to work on Guide to distibution theory and fourier transform by Strichartz
@edwardhartz1029
@edwardhartz1029 4 жыл бұрын
Would φ=1 be a valid test function?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
No, it does not have a compact support on R^n.
@rahmatkhan3982
@rahmatkhan3982 4 жыл бұрын
your lectures very helpful..can you share with me some lectures notes or any other material related to Test function.Generalized functions.?
@antoniodeoliveiranginamaub2845
@antoniodeoliveiranginamaub2845 2 жыл бұрын
you did not explain well why zero is a test function, the smoothness is pretty obvious, but about having a compact support i did not get it, you did not explain that
@StratosFair
@StratosFair 2 жыл бұрын
Its support is empty so it is a compact set (closed and bounded)
@hangmingsheng4825
@hangmingsheng4825 2 жыл бұрын
The milky daisy joly lie because sidewalk ultrastructually scratch upon a careful fight. miniature, super pastor
@scollyer.tuition
@scollyer.tuition 3 жыл бұрын
I note that you are requiring the space of test functions to be C^\infty, but you're not requiring them to be analytic. Is it generally true that a test function need not be analytic?
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Yes, the functions need not to be analytic.
@scollyer.tuition
@scollyer.tuition 3 жыл бұрын
@@brightsideofmaths I guess that is because you want to define the test functions in a piecewise way, and analyticity is thus likely to fail in general? (as in the classic f(x)=e^{-1/x} x> 0, f(x)=0 x
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
@@scollyer.tuition Yes, analyticity will fail.
Distributions 3 | Convergence of Test Functions
7:40
The Bright Side of Mathematics
Рет қаралды 21 М.
Riemann integral vs. Lebesgue integral [dark version]
19:39
The Bright Side of Mathematics
Рет қаралды 11 М.
Caleb Pressley Shows TSA How It’s Done
0:28
Barstool Sports
Рет қаралды 60 МЛН
Distributions 1 | Motivation and Delta Function
9:49
The Bright Side of Mathematics
Рет қаралды 67 М.
Distributions 10 | Distributional Derivative
14:29
The Bright Side of Mathematics
Рет қаралды 6 М.
The hardest problem on the hardest test
11:15
3Blue1Brown
Рет қаралды 15 МЛН
The Elo Rating System
22:13
j3m
Рет қаралды 105 М.
Riemann Integral vs. Lebesgue Integral
19:25
The Bright Side of Mathematics
Рет қаралды 376 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 762 М.
Demystifying the Dirac Delta - #SoME2
9:22
kieransquared
Рет қаралды 28 М.
Green's functions, Delta functions and distribution theory
27:17
Nathan Kutz
Рет қаралды 47 М.
A pretty reason why Gaussian + Gaussian = Gaussian
13:16
3Blue1Brown
Рет қаралды 826 М.