Real Analysis 49 | Riemann Integral for Step Functions

  Рет қаралды 20,224

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 32
@NesrineSaadene
@NesrineSaadene Жыл бұрын
I didn't understand this course in French or Arabic my first language! & Now i understand it from you in English 😂 i'm so happy ❤
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks :D
@RanyaBaba
@RanyaBaba Жыл бұрын
Exactly the same 😂
@NouhaylaRouidi
@NouhaylaRouidi 9 ай бұрын
Me too
@kingofdimensions823
@kingofdimensions823 Жыл бұрын
This is extremely helpful for me to teach my students about the Riemann integral.
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thank you very much :) I hope you can also the other videos for your students :)
@SoopaPop
@SoopaPop 3 жыл бұрын
What an excellent Christmas present!
@Brumor
@Brumor Жыл бұрын
Great series on Real Analysis!
@weinihao3632
@weinihao3632 3 жыл бұрын
In the second case (8:00) partition P1 and P2 create equal sums, because both of them contain the set of points where the step function is discontinuous. Couldn't P3 then also be chosen to be the intersection of P1 and P2 to lead to the same conclusion? Edit: Oh, I just watched the next episode. Now I see the benefit of using the union.
@EstheraJoannaTietchakTiago
@EstheraJoannaTietchakTiago 8 ай бұрын
You are amazing sir, a real life sever thank you very much I now have a hope for my CA😊
@brightsideofmaths
@brightsideofmaths 8 ай бұрын
Thanks! What is a CA?
@mathmalak3451
@mathmalak3451 Жыл бұрын
Good Job I mean... maths is my life Now English language could be my life too because I understand math with this language and with your explanation. I am from North of Africa.
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks! I hope that the subtitles help a little bit :)
@sinanakhostin6604
@sinanakhostin6604 2 жыл бұрын
In the last part of explaining "Case 2" we have that Sigma_p1 = Sigma_p3 and Sigma_p2 = Sigma_p3. It is visible that no matter how many elements do P1 and P2 have and what are the lengths of each segment, all partitions P1, P2 and P3 cover the whole x-axis. However the c_j values (for P1) and d_j values (for P2) are not the same. This is therefore a bit unclear to me to see how the total sum of area under the two partitions turn out to be the same (the same as the total area under P3) !
@sinanakhostin6604
@sinanakhostin6604 2 жыл бұрын
I guess now I can see the point. No matter in which way we split the compact set [a,b] in the process of partitioning, the values of step-function phi is not going to change over certain intervals (the values c_j are not changing). and therefore P3 = P1 U P2 is only split the interval [a,b] into more segments. This is why the area-under-phi using P1,P2 or P3 remains the same.
@nayjer2576
@nayjer2576 Жыл бұрын
For Case 1: if in P2 for example x2 tilde is involved, left from x3 tilde and therefore left from x1 in P1, then the area of P2 is greater then P1, isn't it? And the condition P1 is a subset of P2 still holds.Edit: nevernimd, x0 = a is allways included, in both sets.
@awesomecraftstudio
@awesomecraftstudio Жыл бұрын
Why is the area under the graph the same for a finer partition? If we have no partition at all for example, and took the value of the rectangle with the first constant value, then we added ik more partitions at the jump points where it jumps to lower values, wouldn't the area get smaller? Doesn't this only work if the jump points are always included?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks for the question. Even with more points at the lower level, you would not reduce the size of the rectangle at the higher level :)
@awesomecraftstudio
@awesomecraftstudio Жыл бұрын
@@brightsideofmaths damn thanks for the quick answer that is pretty impressive. Unfortunately I still don't get it. Isn't the point that the area is the same ragardeless of the partition? It seems to only work when the value of the function doesn't change within each partial segment, otherwise which value would you choose to multiply the segment length with?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Maybe just misunderstood the definition of the function phi? It's already defined as a step function with a chosen partition.@@awesomecraftstudio
@ffar2981
@ffar2981 2 жыл бұрын
For the second case: P1 and P2 must still contain the jumps, right? How do you denote that?
@pinklady7184
@pinklady7184 3 жыл бұрын
What is that symbol really called? I mean that circle with a verticle stroke in it. Is it a step function?
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
It is phi, a lowercase greek letter :)
@gauravnainwal5026
@gauravnainwal5026 2 жыл бұрын
Shouldn't the union of the two partitions cover both the cases?
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
I think it may have been more helpful to define the integral in terms of Riemann sums first. Then it would have been clear why exactly the integral is well-defined in these cases.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Indeed that is possible but I like the step function approach :)
@aashsyed1277
@aashsyed1277 3 жыл бұрын
Examples? How to calculate ci?
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
What do you mean exactly?
@Hold_it
@Hold_it 3 жыл бұрын
Nice :D
@NesrineSaadene
@NesrineSaadene Жыл бұрын
I didn't understand this course in French or Arabic my first language! & Now i understand it from you in English 😂 i'm so happy ❤
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks :)
@kuronekonova3698
@kuronekonova3698 Жыл бұрын
Could you be perhaps from the North African country, Tunisia, or any other Maghrebi country that uses French as the main language in the educational system?
Real Analysis 50 | Properties of the Riemann Integral for Step Functions
9:25
The Bright Side of Mathematics
Рет қаралды 12 М.
Riemann Integral vs. Lebesgue Integral
19:25
The Bright Side of Mathematics
Рет қаралды 376 М.
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Weierstrass M-Test
11:43
The Bright Side of Mathematics
Рет қаралды 5 М.
Let's crack the Riemann Hypothesis! | Sociology and Pure Mathematics | N J Wildberger
28:23
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 146 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 142 М.
The Most Useful Curve in Mathematics [Logarithms]
23:43
Welch Labs
Рет қаралды 367 М.
Where does “e” come from?
14:45
Ali the Dazzling
Рет қаралды 112 М.
Real Analysis 51 | Riemann Integral - Definition
5:39
The Bright Side of Mathematics
Рет қаралды 13 М.
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН