Functional Analysis 19 | Hölder's Inequality

  Рет қаралды 23,146

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 20
@zazinjozaza6193
@zazinjozaza6193 4 жыл бұрын
So cool that you are making so many videos on functional analysis.
@jaimelima2420
@jaimelima2420 4 жыл бұрын
Thanks again for putting this together in a clear way. Perhaps two ideas for future series could be "Convex Sets" and "Convex Analysis" ...
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
On my To-Do-List :)
@BBB32648
@BBB32648 3 жыл бұрын
Fantastic proof presentation.
@tim-701cca
@tim-701cca Жыл бұрын
I saw an exercise to prove young’s inequality in a book. Consider the graph y=x^{p-1} and the line x=a,y=b.
@homelylad
@homelylad 3 жыл бұрын
The two proofs were outstanding
@xwyl
@xwyl 2 жыл бұрын
The proof of Young's inequality is clean and swift, though by construction. Construction is perhaps the way of mathematicians to give a clean proof, but it's not for leaners to deepen their understanding. However, Young's inequality isn't the new knowledge here, and the construction uses only very common concepts. This construction is of the bright side.
@wesleyrm
@wesleyrm Жыл бұрын
By construction also saves time! If you remember the starting outline of a proof by construction, you can prove it yourself again in the future, better than memorizing the results themselves.
@struyep
@struyep Жыл бұрын
Young's inequality also follows from the weighted AM-GM inequality. Let x = a^p, y = b^q, u = 1/p, v = 1/q; we have u, v > 0 and u + v = 1. Apply AM-GM with u and v as weights for the elements x and y. Then x^u y^v
@rodrigodiazarancibia5486
@rodrigodiazarancibia5486 3 ай бұрын
Thanks so much for the video. I just have one question. In the proof of Young's inequality. How can we justify that lambda reaches the values ​​0 and 1?
@brightsideofmaths
@brightsideofmaths 3 ай бұрын
Thanks for the question. Is that even needed here?
@rodrigodiazarancibia5486
@rodrigodiazarancibia5486 3 ай бұрын
@@brightsideofmaths Ouhh thanks thanks, It is not needed. Now I see it 👌.
@zephrias8789
@zephrias8789 6 ай бұрын
Very good explanation, thank you!
@brightsideofmaths
@brightsideofmaths 6 ай бұрын
Glad you enjoyed it!
@scienceoftheheart8759
@scienceoftheheart8759 Жыл бұрын
Thanks a lot it helps a lot, you said you use obs to record the videos but what about to writes the math exercises? Any drawing program?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
LaTeX :)
@darkstudios001
@darkstudios001 4 жыл бұрын
Great videos! I love this channel
@qiaohuizhou6960
@qiaohuizhou6960 3 жыл бұрын
Hi, thank you so much for your video! I am wondering if you could add a video on proving this Holder's inequality on functions defined on measure space? I really have problems understanding what exactly does it mean to have functions defined on an abstract measure space. Is that the measurable function mapping X from abstract measure space to real-valued space, or does it mean a function like L(μ)? I am very puzzled why the x, y seems are just variable defined on R can be substituted by |X| |Y| and the inequality still holds. I hope my question makes sense! thank you so much! Also, in our lecture note, the holder's inequality is proved using convexity inequality, are convexity inequality and Yong's inequality somehow connected?
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
The ideas stay the same but you are completely right: I should do a video about these abstract concepts!
@qiaohuizhou6960
@qiaohuizhou6960 3 жыл бұрын
@@brightsideofmaths Thank you so much! That would be super helpful !
Functional Analysis 20 | Minkowski Inequality
7:55
The Bright Side of Mathematics
Рет қаралды 18 М.
Functional Analysis 25 | Hahn-Banach Theorem
12:10
The Bright Side of Mathematics
Рет қаралды 29 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Functional Analysis 17 | Arzelà-Ascoli Theorem
13:30
The Bright Side of Mathematics
Рет қаралды 31 М.
Functional Analysis 30 | Properties of the Spectrum
10:27
The Bright Side of Mathematics
Рет қаралды 12 М.
Functional Analysis 22 | Dual Spaces
9:17
The Bright Side of Mathematics
Рет қаралды 32 М.
Functional Analysis 3 | Open and Closed Sets
11:07
The Bright Side of Mathematics
Рет қаралды 94 М.
Functional Analysis 15 | Riesz Representation Theorem
10:10
The Bright Side of Mathematics
Рет қаралды 42 М.
Functional Analysis 28 | Spectrum of Bounded Operators
7:45
The Bright Side of Mathematics
Рет қаралды 31 М.
Functional Analysis 6 | Norms and Banach Spaces
7:57
The Bright Side of Mathematics
Рет қаралды 84 М.
Functional Analysis 27 | Bounded Inverse Theorem and Example
6:11
The Bright Side of Mathematics
Рет қаралды 9 М.