This integral goes on forever

  Рет қаралды 74,611

BriTheMathGuy

BriTheMathGuy

Күн бұрын

Пікірлер: 187
@BriTheMathGuy
@BriTheMathGuy Жыл бұрын
🎓Become a Math Master With My Intro To Proofs Course! (FREE ON KZbin) kzbin.info/www/bejne/aZTdmJl-irGNedU
@robloxguy1268
@robloxguy1268 Жыл бұрын
I’m a kid
@trbz_8745
@trbz_8745 3 жыл бұрын
So it's 5φ/6? Interesting that phi shows up here, although it sort of makes sense because phi likes to show up in Fibonacci-esque problems with sums and recursion.
@maxthomas-bland4842
@maxthomas-bland4842 3 жыл бұрын
Its not surprising at all really, the quadratic involving f(x) is the form of the solution that gives phi, x^2-x-1, exactly the same, considering the solution of f(x) was 1+sqrt(1+4x) all on 2 subbing in x as 1 gives phi.
@thatssomethingthathappened9823
@thatssomethingthathappened9823 3 жыл бұрын
HOW DO YOU GET THE PHI SYMBOL?!
@Ghost____Rider
@Ghost____Rider 3 жыл бұрын
@@thatssomethingthathappened9823 Greek keyboard I assume
@targetiitbcse1761
@targetiitbcse1761 3 жыл бұрын
@@Ghost____Rider ερτθπφδσζψωβηκμλξ here are all the symbols
@loneranger4282
@loneranger4282 3 жыл бұрын
@@thatssomethingthathappened9823 Just search up "Phi unicode"
@dissonanceparadiddle
@dissonanceparadiddle 3 жыл бұрын
You got to love how calculus is able to deal with the infinite and make it manageable
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Right?!
@naivedyam2675
@naivedyam2675 3 жыл бұрын
Here it was made manageable by algebra not calculus
@dissonanceparadiddle
@dissonanceparadiddle 3 жыл бұрын
@@naivedyam2675 this is true.
@spudhead169
@spudhead169 2 жыл бұрын
Algebra can exist alone, Calculus cannot without algebra. Calculus is like a clingy girlfriend.
@hydropage2855
@hydropage2855 2 жыл бұрын
This is algebra
@mintsjams8862
@mintsjams8862 3 жыл бұрын
Wonderful video! I got the same answer in a different and admittedly slower way. I set y equal to the function then noticed that y = sqrt(x + y). From there, you can isolate y by completing the square and you get y = sqrt(x+ 1/4) + 1/2. From there, it's smooth sailing to integrate.
@MatteoDolcin-ye8xm
@MatteoDolcin-ye8xm 3 ай бұрын
Same, although I'm not that good at integration yet, i was mostly interested in the algebra
@josephcohen734
@josephcohen734 3 жыл бұрын
Anybody have a proof for why the infinite thing converges at all for x in that range? Technically, before he showed what the infinite thing equals, he first needs to prove it equals a finite number at all. I used my computer to estimate it, and values seem to converge pretty quickly for all positive x that I tried (including x = 1000), but that's not a proof. Edit: I came up with a proof. It's hard to read as a youtube comment but I assume no one will read it anyways. part 0: simple setup 1. Define a function T(n,x) = sqrt( x + T(n-1, x) ), and T(1,x) = sqrt(x) 2. Assume x is a real number & x >= 0 part 1: T(n,x) is increasing as n increases for all n 1. show if T(n,x) > T(n-1, x) then T(n+1,x) = sqrt(x + T(n,x)) > T(n,x) = sqrt(T(n-1,x)). This is true for all x >= 0 2. show T(2,x) = sqrt( x + sqrt(x) ) > T(1,x) = sqrt(x). This is true for all x > 0 Point 1 basically means that if T ever increases as n increases, then T will continue increasing forever as n increases. Point 2 shows that as n increases from n=1 to n=2, T(n,x) increases (unless x = 0, which we will get to later) Points 1 & 2 together show that if x ≠ 0, then T(n,x) is increasing as n increases for all n. part 2: if T(n,x) =< 1/2 + sqrt(x + 1/4) for all (n,x) in the domain 1. Assume there is a value (n,x) such that T(n,x) >= 1/2 + sqrt(x + 1/4) T(n,x) > 1/2 + sqrt(x + 1/4) T(n,x) - 1/2 > sqrt(x + 1/4) (T(n,x) + 1/2)^2 > x + 1/4 (T(n,x))^2 - T(n,x) + 1/4 > x + 1/4 (T(n,x))^2 - T(n,x) > x (T(n,x))^2 > x + T(n,x) T(n,x) > sqrt(x + T(n,x)) From the definition, we know sqrt(x + T(n,x)) = T(n+1,x) T(n,x) > T(n+1,x) Make the substitution 2. This means that if T(n,x) > 1/2 + sqrt(x + 1/4), then T(n+1,x) < T(n,x). This would mean that T decreases as n increases, which is impossible as shown in part 1. Therefore, T(n,x) =< 1/2 + sqrt(x + 1/4) for all (n,x) conclusion: T(n, x) must converge to a number 0 1. part 1 shows that T(n,x) is increasing for all n if x > 0 2. part 2 shows that T(n,x) is never greater than 1/2 + sqrt(x + 1/4) 3. this means that T(n,x) must approach a number less than or equal to 1/2 + sqrt(x + 1/4) as n goes to infinity. if x < 0 What if x = 0? Then T(n,x) = 0 for all n, so T(n,x) "approaches" 0 as n goes to infinity 1. if T(n-1, 0) = 0, then T(n,0) = sqrt( 0 + 0 ) = 0 2. T(1) = sqrt(0) = 0 3. points 1 and 2 together show that if x = 0 then T(n,x) = 0 for all n Real conclusion: limit as n -> infinity of T(n,x) = a finite number if x >= 0.
@theophilearnould9868
@theophilearnould9868 3 жыл бұрын
Could you write it on a paper and make a photo and post the link in this comment it really interestes me but in this form it is unreadable
@theophilearnould9868
@theophilearnould9868 3 жыл бұрын
This is exactly what I was looking for in the comments
@josephcohen734
@josephcohen734 3 жыл бұрын
@@theophilearnould9868 Sure. Kinda busy rn but I'll get to it in the next few days. U familiar with the idea of a function that takes multiple inputs? Kinda important to the proof but I know it confuses a lot of people.
@theophilearnould9868
@theophilearnould9868 3 жыл бұрын
@@josephcohen734 maybe not familiar but I know them and know how to use them, and if I have any trouble I'll juste take courses on the internet 😁
@theophilearnould9868
@theophilearnould9868 3 жыл бұрын
@@josephcohen734 thank you 😁
@jensknudsen4222
@jensknudsen4222 3 жыл бұрын
You're the king of exotic integrals.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
I hope you enjoy them!
@jensknudsen4222
@jensknudsen4222 3 жыл бұрын
@@BriTheMathGuy I sure do! Thanks for making these videos.
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@BriTheMathGuy I do!
@maalikserebryakov
@maalikserebryakov Жыл бұрын
Bri is decent but no. Maths505 is the King of Integration. If there was a KZbin integration bee im telling you that guy would destroy everyone. Bri, blackpenredpen, Papa flammy.,.. Even the unhinged Autism of Dr Peyam stands no chance.
@jtris01
@jtris01 Жыл бұрын
y = sqrt(x + y) y² = x + y y² - y - x = 0 ½[1 ± sqrt(1 + 4x)] y = ½[1 + sqrt(1 + 4x)], as y cannot be negative. int_{x = 0}^{x = 1} ½ + ½sqrt(1 + 4x) dx = [ ½x + (1/12)(1 + 4x)^(3/2) ] {x = 0}^{x = 1} = (½ - 0) + (1/12)(5^(3/2) - 1) = 5/12 + (1/12)(5^(3/2)) = 5/12 + 5/12(5^½) = (5/12)(1 + 5^½)
@LogosNigrum
@LogosNigrum 3 жыл бұрын
I think the minus on the plus or minus is valid only when x is 0, which happens to be the lower limit of the integral.
@uskilla489
@uskilla489 3 жыл бұрын
Brooo that was amazing
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you enjoyed it!
@abelhivilikua8735
@abelhivilikua8735 3 жыл бұрын
Excellent vídeo dude! Your channel is amazing!!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thanks a ton!
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
Of course, this all assumes that the sequence defined by x(n + 1) = sqrt[x + x(n)] converges for appropriate values of x(0) and x.
@Bennici
@Bennici 3 жыл бұрын
I wonder if you could find an infinitely nested representation of e^(-x²) that could be "solved" by this method.
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
@@Bennici That wouldn't work, because the antiderivative is nonelementary
@dneary
@dneary 3 жыл бұрын
I was on a similar track, but made a mistake somewhere. I used y instead of f(x), and used implicit differentiation from x = y^2-y to dx = (2y-1)dy - then the integral become int(0 .. phi) y(2y-1)dy - I see now that there are two solutions to the equation y^2-y = 0 and I took y=0 when I should have taken y=1, since lim_(x to 0+) y = 1 - but it's a tricky limit to evaluate!
@mickschilder3633
@mickschilder3633 3 жыл бұрын
Can someone explain the following to me: in the starting notation of f(x), should we not note that f(0)=sqrt(0+sqrt(0+...)), which should then always equal 0 right? But in our representation we get f(0)=1. I must be missing something but that does not sound right to me
@lutingchen8958
@lutingchen8958 3 жыл бұрын
bprp had a good video on this: kzbin.info/www/bejne/qHy5dn6upNV1qdU
@mickschilder3633
@mickschilder3633 3 жыл бұрын
Okay i see, thanks!
@Happy_Abe
@Happy_Abe 3 жыл бұрын
Great video!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you liked it!
@Mehraj_IITKGP
@Mehraj_IITKGP 3 жыл бұрын
Here is an alternate way: Substitute $t=\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}$ So $t^{2}=x+t$ This means $2tdt=dx+dt$ Whence, $dx=(2t-1)dt$ Notice in the relation $t^{2}=x+t$ when $x=0$, $t=0$ and when $x=1$, $t=\frac{1+\sqrt{5}}{2}$ Substituting these values in the integral: $\int_{0}^{\frac{1+\sqrt{5}}{2}}{t(2t-1)dt}$ Which evaluates to $\frac{5+5\sqrt{5}}{12}\approx1.34836165729158$.
@justinpark939
@justinpark939 3 жыл бұрын
2:59 I am assuming he is thinking to take away the negative version of the function because he knows that the limits of integration do not fit the conditions for (1-sqrt(1+4x))/2 being always a positive value (it is not negative at x=0, where f(0)=0).
@mathieuaurousseau100
@mathieuaurousseau100 3 жыл бұрын
At that point both functions are equal though
@angelmendez-rivera351
@angelmendez-rivera351 3 жыл бұрын
No, he takes away the negative version because, given how the square root radical symbol is defined, he knows for a fact that the function is nonnegative.
@justinpark939
@justinpark939 3 жыл бұрын
@@angelmendez-rivera351 oh, of course! that actually is obvious at first glance
@jonathandambrosio4628
@jonathandambrosio4628 3 жыл бұрын
That was awesome!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you liked it!
@mskiptr
@mskiptr 3 жыл бұрын
f x = √(x + √(x + …)) -- we can rewrite it as the follwing: f x = fix g where g y = √(x + y) -- `fix g` is the fixpoint of g -- (also notice, that `x` is a known value at this point) fix g = g (fix g) fix g = √(x + fix g) -- now, it's pretty important to decide, what are the domain and range of the square root. -- if it's a function and we want to stick to reals, then both better not be negative g : ⟨-x,∞) -> ⟨0,∞) -- this also narrows down the value of `fix g` fix g : ⟨-x,∞) ∩ ⟨0,∞) fix g : ⟨max 0 (-x),∞) (fix g)² = (√(x + fix g))² (fix g)² = |x + fix g| (fix g)² = x + fix g -- cannot be negative (fix g)² - fix g - x = 0 fix g ∈ {(1-√(1+4x))/2,(1+√(1+4x))/2} -- or let's the `±` give us a set fix g ∈ (1±√(1+4x))/2 fix g ∈ ½±√(¼+x) -- this also means, that if we want to stay in real numbers, we need to constraint `x` x : ⟨-¼,∞) -- now it gets pretty tricky, because we can get various values of `x` and for each there might be zero, one or two different fixpoints satisfying all the conditions -- let's try to inspect some cases individually case x of -¼ -> fix g ∈ ½±√(¼-¼) fix g ∈ ½±0 fix g ∈ {½} ½ ∈ ⟨max 0 ¼,∞) ½ ∈ ⟨¼,∞) fix g = ½ x : (-¼,0) -> fix g ∈ ½±√(¼+x) -- again, we can consider two cases case fix g of ½-√(¼+x) -> ½-√(¼+x) ∈ ⟨max 0 (-x),∞) ½-√(¼+x) ≥ max 0 (-x) ½-√(¼+x) ≥ -x ¼+x - √(¼+x) + ¼ ≥ 0 4(¼+x) - 4√(¼+x) + 1 ≥ 0 (2√(¼+x) - 1)² ≥ 0 -- and this is always true, thus fix g = ½-√(¼+x) -- is consistent ½+√(¼+x) -> ½+√(¼+x) ∈ ⟨max 0 (-x),∞) ½+√(¼+x) ≥ max 0 (-x) ½+√(¼+x) ≥ -x ¼+x + √(¼+x) + ¼ ≥ 0 4(¼+x) + 4√(¼+x) + 1 ≥ 0 (2√(¼+x) + 1)² ≥ 0 -- and this is also true, thus fix g = ½+√(¼+x) -- is also consistent 0 -> fix g ∈ ½±√(¼+0) fix g ∈ ½±½ fix g ∈ {0,1} case fix g of 0 -> 0 ∈ ⟨max 0 (-0),∞) 0 ≥ max 0 (-0) 0 ≥ 0 -- thus fix g = 0 -- is consistent 1 -> 1 ∈ ⟨max 0 (-1),∞) 0 ≥ max 0 (-1) 0 ≥ 0 -- thus fix g = 0 -- is also consistent x : (0,∞) -> fix g ∈ ½±√(¼+x) case fix g of ½-√(¼+x) -> ½-√(¼+x) ∈ ⟨max 0 (-x),∞) ½-√(¼+x) ≥ max 0 (-x) ½-√(¼+x) ≥ 0 ½ ≥ √(¼+x) √¼ ≥ √(¼+x) -- `¼+x` is assumed here to not be negative ¼ ≥ ¼+x 0 ≥ x -- contradiction! -- and thus this branch is impossible ½+√(¼+x) -> ½+√(¼+x) ∈ ⟨max 0 (-x),∞) ½+√(¼+x) ≥ max 0 (-x) ½+√(¼+x) ≥ 0 -- but because both ½ ≥ 0 -- and √(¼+x) ≥ 0 -- thus ½+√(¼+x) ≥ 0 -- is always true in this branch, and thus fix g = ½+√(¼+x) -- is consistent -- and this whole tree simplifies to case x of x : ⟨-¼,0⟩ -> fix g ∈ ½±√(¼+x) x : (0,∞) -> fix g = ½+√(¼+x) {- But this is problematic in the following way: Since for some values of `x`, `g` has several fixpoints, there are uncountably many different functions that would fit the original expression for `f`. There are two 'simple' values ``` f : ⟨-¼,0⟩ -> ⟨0,½⟩ f x = ½-√(¼+x) ``` and ``` f : ⟨-¼,∞) -> ⟨½,∞⟩ f x = ½+√(¼+x) ``` but in principle, we could combine these two by picking points from one or the other, or even skipping some of them. -} {- But since the original goal was to calculate the integral of `f` from 0 to 1, there are only two possiilities for this interval. It could just be ``` f x = ½+√(¼+x) ``` or ``` f 0 = 0 f x = ½+√(¼+x) ``` but this has no influence on the intagral, so we can choose either. Of course, in the `⟨-¼,0)` region the function is still pretty undefined, but there's really nothing more we can do about it. So let's finally get the solution: -} I f (0,1) = I (λ x -> ½+√(¼+x)) (0,1) = I (λ x -> ½(1+√(1+4x))) (0,1) = ½ * I (λ x -> 1+√(1+4x)) (0,1) = ½ * I ((λ x -> 1+√x) ∘ (λ x -> 1+4x)) (0,1) = ½ * I ((λ x -> 1+√x) ∘ (λ x -> 1+4x) * 4*¼) (0,1) -- (ugly) shorthand: f*a = λ x -> a * f x = ½*¼ * I ((λ u -> 1+√u) ∘ (λ x -> 1+4x) * 4) (0,1) -- at the core of the 'u substitution' lies regular function composition = ⅛ * I (λ u -> 1+√u) (1+4*0,1+4*1) -- with indefinite integrals, we could just move the composition outside of the integral = ⅛ * I (λ u -> 1+√u) (1,5) = ⅛ * I (λ u -> 1+u^½) (1,5) = ⅛ * ((λ u -> u + ⅔*u^1.5) 5 - (λ u -> u + ⅔*u^1.5) 1) = ⅛ * (5 + ⅔*5^1.5 - 1 - ⅔*1^1.5) = ⅛ * (4 + (10√5 - 2)/3) = ½ + (5√5 - 1)/12 = (5 + 5√5)/12 = 5/12 * (1 + √5)
@smrpkrl
@smrpkrl 3 жыл бұрын
great effort
@anshumanagrawal346
@anshumanagrawal346 3 жыл бұрын
@@smrpkrl I mean in the video he does some pretty stupid shit
@jadepinto4321
@jadepinto4321 3 жыл бұрын
this is great! makes it easier to apply myself in my calc classes
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Great to hear!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Another Incredible Integral! kzbin.info/www/bejne/onnMZmaHmteYfqM
@chispun2
@chispun2 3 жыл бұрын
Well yes, but actually no. If you plug in both functions + - , you get an even better solution, you get the result is equal to one :)
@chispun2
@chispun2 3 жыл бұрын
Nevermind, I am wrong, the - part of the function is introduced by squaring
@sktbizmathprogphy433
@sktbizmathprogphy433 3 жыл бұрын
Nice video bro.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thanks and thanks for watching!
@Calculusgoat
@Calculusgoat 9 ай бұрын
I have a good way to do this (i assume x is a certain values so lets say its 4) sqrt of 4 is 2 and sqrt is 2 is 1.41 so it could go to 1
@romajimamulo
@romajimamulo 3 жыл бұрын
I don't love that choice though, because x=0 should have F(x)=0, but that's probably a point of discontinuity EDIT: It is a point discontinuity, and can be ignored in integration
@birdieman_1180
@birdieman_1180 Жыл бұрын
1:06 isnt it sqrt(a+b) =/= sqrt(a)+sqrt(b)???
@SlimThrull
@SlimThrull 3 жыл бұрын
(1+Sqt(5))/2 is the golden ratio. The answer we get here has 1+Sqr(5) in it. It's not quite the golden ratio, but it is close. I'm curious if there's a reason that it would pop up in here or if it's just a coincidence.
@aryagerami9022
@aryagerami9022 3 жыл бұрын
The answer can br written as (-5/6)phi where phi is the golden ratio. Wouldn't be surprised if it was related but I strongly doubt it.
@colbyforfun8028
@colbyforfun8028 3 жыл бұрын
The value of the integrand at x=1 is the golden ratio. I'm not sure how that relates to the sum once you integrate it though.
@nidhiagrawal3354
@nidhiagrawal3354 3 жыл бұрын
@@aryagerami9022 Why the NEGATIVE ⅚. I think it should be POSITIVE ⅚.
@vezulykamarari
@vezulykamarari 3 жыл бұрын
Me thinking I'm smart for taking pre-calc: Also me not knowing a god damn thing in this video:
@logan9093
@logan9093 3 жыл бұрын
You'll get there! We all were there at one point
@bowenjudd1028
@bowenjudd1028 3 жыл бұрын
Which grade are ya in? The way you said your comments suggests you’re in a gifted class.
@vezulykamarari
@vezulykamarari 3 жыл бұрын
@@bowenjudd1028 I’m finishing 11th while taking ap classes but I promise I am not gifted lol
@bowenjudd1028
@bowenjudd1028 3 жыл бұрын
@@vezulykamarari, OK, that makes sense. Calc is fun though.
@kshitijsharma2200
@kshitijsharma2200 3 жыл бұрын
Yeah man the recursion part is confusing. The first time I heard about this I was like "you can do that???" This started to make more sense for me when I started finding limits of recursive sequences in calc II. Just hold on.
@manucitomx
@manucitomx 3 жыл бұрын
Easy on the eye and great with the maths!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thank you! Cheers!
@MohamedSHbib
@MohamedSHbib 3 жыл бұрын
Grea videos! Can I ask you what application you are using for your demonstration?
@Miju001
@Miju001 3 жыл бұрын
If you're referring to the things used for writing, I think it's just a glass pane and regular markers (also the video gets flipped in editing to make it so the writing isn't backwards)
@MohamedSHbib
@MohamedSHbib 3 жыл бұрын
@@Miju001 that makes sense. Thank you Marta!
@Miju001
@Miju001 3 жыл бұрын
@@MohamedSHbib No problem! c:
@bot24032
@bot24032 3 жыл бұрын
But for x=0 the function should be equal to 0, or (1-√(1+4x))/2. So it's not continuos from 0 to 1.
@samyaspapa
@samyaspapa 3 жыл бұрын
That was my logic too. I tried solving it before watching the video and basically followed the same steps, but I chose the negative square root because at x=0, f(x) should be zero.
@samyaspapa
@samyaspapa 3 жыл бұрын
On the other hand, the function looks like it should be monotonically increasing. If you try plotting this in Excel (or some computer program), you'll find that the function takes the route of the positive root. I think this is a case where the infinite expression has a discontinuity at x=0. But since this is only a single point, it doesn't contribute to the value of the integral and the evaluation in the video is correct. (But as you see from my other comment, I made the same mistake as you. It was only after watching the video did I look further into the how the function actually acts.)
@lutingchen8958
@lutingchen8958 3 жыл бұрын
bprp had a good video on this: kzbin.info/www/bejne/qHy5dn6upNV1qdU
@bot24032
@bot24032 3 жыл бұрын
@@lutingchen8958 have seen that video, it proves that function is not continuous in 0
@goyaldev09
@goyaldev09 3 жыл бұрын
Where did u buy that orange glass marker?
@thatssomethingthathappened9823
@thatssomethingthathappened9823 3 жыл бұрын
I look at the square root of (x + ...) part and I set the value to y. I immediately go into my graphing calculator and graph y = sqrt (x + y).
@thatssomethingthathappened9823
@thatssomethingthathappened9823 3 жыл бұрын
If x = 1, y = phi
@lyrimetacurl0
@lyrimetacurl0 2 жыл бұрын
Most abrupt ending.
@ankitbasera8470
@ankitbasera8470 2 жыл бұрын
1:08 Wouldn't it be more appropriate to write *{f(x)}²*
@Firigion
@Firigion 3 жыл бұрын
That's 5/6 times the golden ratio =D
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Very Cool!
@kasuha
@kasuha 3 жыл бұрын
One thing that baffles me is that your simplified f(x) is defined on x >= -1/4 but the original function doesn't feel like it should allow negative values. Also, f(0) = 1 while the original function definitely feels like it should be zero at x=0 ... unless we agree that sum of infinite zeros is one. Or choose the negative option you rejected. Was the simplification really valid?
@kasuha
@kasuha 3 жыл бұрын
Okay I did some estimaties and it really looks like the original function limits to 1 when x gets close to zero. Weird. And the integral is not affected by the function being defined or not at zero.
@reeeeeplease1178
@reeeeeplease1178 3 жыл бұрын
@@kasuha maybe consider what happens to values like 0.01 when square-rooted (since it's close to 0) 0.01 = 1/100 => sqrt(0.01) = 1/10 = 0.1 so sqrt(0.01) is way bigger than 0.01 itself and iterating the sqrt function will eventually bring all numbers (except for 0 itself) to 1 16 -> 4 -> 2 -> 1.414... -> .... -> 1 (in the limit) and as demonstrated earlier, the same thing happens for all 0 < x < 1 because if x
@minhanhnguyenngoc972
@minhanhnguyenngoc972 3 жыл бұрын
Amazing!! Love your videos a lottt@
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thank you so much!!
@kaskilelr3
@kaskilelr3 3 жыл бұрын
But what if x is only nested a finite number of times O.o
@sujalsalgarkar360
@sujalsalgarkar360 3 жыл бұрын
I learned this problem in my 11th grade and I think myself a genius after I know the solution to a Bri The math guy vedio😂😂
@4lines633
@4lines633 2 жыл бұрын
does it happen for all recursive function to be a way to write it in a non recursive way?
@Deeer69420
@Deeer69420 2 жыл бұрын
I haven’t even learnt calculus yet
@blidge8282
@blidge8282 3 жыл бұрын
= ( 5 /6 ) * phi
@fengshengqin6993
@fengshengqin6993 Жыл бұрын
The lower limit is x=0 ,when x=0 the u=0! not 1 ! .Then the intergal result should be (7+5*srq5)/12
@yesminister9511
@yesminister9511 3 жыл бұрын
But the key thing before you evaluate this integral is to verify that it is convergent when x is on this interval
@shazullahyusufzai5704
@shazullahyusufzai5704 2 жыл бұрын
If you take the derivative of the equation does it give the equation under integral
@synaestheziac
@synaestheziac 3 жыл бұрын
Answer also equals 5/6 of Phi
@fahrenheit2101
@fahrenheit2101 3 жыл бұрын
Is there a more rigorous reason to choose the positive solution from the quadratic formula?
@p_square
@p_square 3 жыл бұрын
It's +ve because our original integrand was sqrt(x *+* sqrt(x *+* sqrt(...))) so it can't be -ve
@fahrenheit2101
@fahrenheit2101 3 жыл бұрын
@@p_square Yes but when was the other solution created? What does it correspond to?
@geordan6740
@geordan6740 3 жыл бұрын
@@fahrenheit2101 The second solution happens because we squared both sides
@fahrenheit2101
@fahrenheit2101 3 жыл бұрын
@@geordan6740 Oh yeah, I should've noticed that. Thanks.
@albertodiaz364
@albertodiaz364 3 жыл бұрын
holy shit 5/6 of the golden ratio
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Awesome right!
@calcubite9298
@calcubite9298 2 жыл бұрын
1+sqrt(5). Phee phi phoe phum, I smell the blood of a golden ratio. I wonder if the integral from [0,1] of an infinitely nested square root function has any geometric relation to (5/6)*phi?
@Kapomafioso
@Kapomafioso 3 жыл бұрын
I don't get it. The original function seems to be clearly zero when you plug in x = 0. However, your result gives (1/2)(1+sqrt(1+0)) = 1. What went wrong??
@samyaspapa
@samyaspapa 3 жыл бұрын
If you try plotting this in Excel (or some computer program), you'll find that the function takes the route of the positive root. I think this is a case where the infinite expression has a discontinuity at x=0. But since this is only a single point, it doesn't contribute to the value of the integral and the evaluation in the video is correct.
@lutingchen8958
@lutingchen8958 3 жыл бұрын
bprp had a good video on this: kzbin.info/www/bejne/qHy5dn6upNV1qdU
@byronwatkins2565
@byronwatkins2565 3 жыл бұрын
The 1 term was NOT divided by 4 and its limits should NOT be changed from 0 to 1.
@nass8899
@nass8899 3 жыл бұрын
do you actually write all this stuff backwards? or how do you make it correct writing it from behind?
@mr.mirror1213
@mr.mirror1213 3 жыл бұрын
Legends say he writes backward
@taemyr
@taemyr 3 жыл бұрын
Write the normal way. Mirror the video.
@StepanKorney
@StepanKorney 3 жыл бұрын
I just realized that he writes everything in the opposite orientation, so that we see everything.
@mskiptr
@mskiptr 3 жыл бұрын
Or he could be flipping the entire video afterwards
@stapler942
@stapler942 3 жыл бұрын
This integral, it doesn't end Yes it goes on and on my friend Some people started writing it Not knowing what it was And they'll just keep on writing it forever just because...
@einsteiniumfusion6658
@einsteiniumfusion6658 2 жыл бұрын
Solved this before your solution
@the_mazer_maker1969
@the_mazer_maker1969 3 жыл бұрын
Is he writing backwards or is the whole video flipped?
@sandeepkumariaf603
@sandeepkumariaf603 3 жыл бұрын
Super sir
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thanks!
@danielbenton5817
@danielbenton5817 3 жыл бұрын
This is wrong because it is not continuous around f(0) since u can tell from the second function that the lim as x tends towards 0 is 1 but when x=0 f(0) is obviously 0. So there is no solution
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
I hope you have a wonderful day!
@cosmicvoidtree
@cosmicvoidtree 2 жыл бұрын
Or if you wanted to be extra cliche, you could multiply the original integral by 6/5 so that you could force in a “golden answer” cliche. Glad you didn’t.
@Seb135-e1i
@Seb135-e1i 3 жыл бұрын
Small correction - putting the ² with the function itself, as in f²(x), means f(f(x)) The only exception is in trigonometry, because you never really have to take a trig function of something twice, and in the rare case where it's somehow useful, you can write out the function twice. That's also why f^(-1) means the inverse of x, because you can use basic exponent rules this way f(x) = f^1 (x) f^(-1) (f^1 (x)) = f^0 (x) The exponent tells you how many times you apply the function. If you apply it 0 times, nothing happens. f^0 (x) = x
@factsheet4930
@factsheet4930 3 жыл бұрын
5/6 * phi 😉
@epsilonxyzt
@epsilonxyzt 3 жыл бұрын
Why (0.5)! = sqrt(pi)/2 ?
@2-_
@2-_ 2 жыл бұрын
haha, i took time to calculate it myself and it was the same result!
@NerdWithLaptop
@NerdWithLaptop 3 жыл бұрын
1 + √5 is less surprising when you realize that this is two times phi, or 2(√(1+√(1+√(1+√…))))
@NecmettinMarmara-Fizikci
@NecmettinMarmara-Fizikci 3 жыл бұрын
Nice video but finnish false because (5sqr5+7 )/12
@subhoghosal7
@subhoghosal7 3 жыл бұрын
I don't thing neglecting -ve value is not straightened. More rigor needed.
@emilpysenisoncrack420
@emilpysenisoncrack420 3 жыл бұрын
For those who didn't see it, the answer is also equal to 5Φ/6 Edit: Sorry, maybe everyone saw it.
@alphalunamare
@alphalunamare 3 жыл бұрын
This stinks to high heaven!
@yamahantx7005
@yamahantx7005 3 жыл бұрын
I don't get it. The quadratic formula gives you the roots, not a general solution. Why are you plugging the root back in as a function of x? It is cool that you can write backwards, though.
@alphadragonn3685
@alphadragonn3685 3 жыл бұрын
The roots are what make a function equal to zero to he rearranged into a quadratic that equals zero because then solving for the root also solves the equation. The function he got is what satisfied his equation therefore it was also the root of the equation since the equation was equal to 0
@Fillipor
@Fillipor 3 жыл бұрын
I just realised he must write this backwards so we can see this from the front wow!
@gonzalomorislara8858
@gonzalomorislara8858 3 жыл бұрын
Don't you think that mirroring the image in post would be much easier?
@Fillipor
@Fillipor 3 жыл бұрын
@@gonzalomorislara8858 exactly
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
I do flip the video during editing :)
@arcioko2142
@arcioko2142 2 жыл бұрын
solving before watching the video: (spoilers, click read more) (sqrt125 + 5)/12, which is equal to 5/6 * Phi
@bodhisatwakundu2226
@bodhisatwakundu2226 3 жыл бұрын
This is quite easy tho
@0xN1nja
@0xN1nja 2 жыл бұрын
this was easy tho
@akashkushwaha4559
@akashkushwaha4559 3 жыл бұрын
Love it I am indian 🇮🇳🇮🇳
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you enjoyed it!
@enejidjsi5939
@enejidjsi5939 3 жыл бұрын
Nationality doesn't matter? Why are you telling us this?
@akashkushwaha4559
@akashkushwaha4559 3 жыл бұрын
@@enejidjsi5939 it's my identity any problem
@enejidjsi5939
@enejidjsi5939 3 жыл бұрын
@@akashkushwaha4559 no but it's very weird you have to insert your "identity" into every unrelated topic
@akashkushwaha4559
@akashkushwaha4559 3 жыл бұрын
@@enejidjsi5939 what's this behaviour bro not fair it's democracy
@janekmuric
@janekmuric 3 жыл бұрын
Why can we apply the quadratic formula here? I think that because x is not constant, but rather depends on f(x), the quqdratic formula shouldn't apply, right?
@theophilearnould9868
@theophilearnould9868 3 жыл бұрын
I would also like to know !
@robloxguy1268
@robloxguy1268 Жыл бұрын
I’m a kid
@id3655
@id3655 3 жыл бұрын
Everything about the way you move and speak looks mechanical. Just be yourself bro, maybe you've convinced yourself otherwise but that doesn't improve "the experience" for the viewer at all
@justintroyka8855
@justintroyka8855 3 жыл бұрын
I disagree. I think his lecture style is quite natural and engaging.
The Most Intimidating Integral I've Ever Seen
6:36
BriTheMathGuy
Рет қаралды 83 М.
The Integral of your Dreams (or Nightmares)
8:41
BriTheMathGuy
Рет қаралды 429 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Theorems That Disappointed Mathematicians
7:35
BriTheMathGuy
Рет қаралды 82 М.
Deriving the Gamma Function
18:01
Prime Newtons
Рет қаралды 51 М.
This isn't a Circle - Why is Pi here?
10:30
BriTheMathGuy
Рет қаралды 299 М.
The Hardest Integral I've Ever Done
7:00
BriTheMathGuy
Рет қаралды 213 М.
You don't understand Maxwell's equations
15:33
Ali the Dazzling
Рет қаралды 103 М.
You Might Be Making This Mistake
8:01
BriTheMathGuy
Рет қаралды 143 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
Don't Show This To Your Teacher
6:00
BriTheMathGuy
Рет қаралды 282 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН