🎓Become a Math Master With My Intro To Proofs Course! (FREE ON KZbin) kzbin.info/www/bejne/aZTdmJl-irGNedU
@neiljf10893 жыл бұрын
At first I was amazed that he can do backwards writing so neatly. Then realised he just flipped the video
@HogTieChamp3 жыл бұрын
I was amazed but then you ruined the magic for me!!
@manasaprakash71253 жыл бұрын
What????
@offbeatstuff84733 жыл бұрын
I was just going to comment the same thing.
@umershaikh71793 жыл бұрын
that is pretty obvious...
@ParagPardhiNITT2 жыл бұрын
@@manasaprakash7125 sarcasm dude 😅
@Ascientistsjourney3 жыл бұрын
Mathematicians: Look at my integral of my dreams. Physicists: Cool. But does that serve any purpose? Mathematicians: NO, but look at it. It's so magical. ;p
@123akash1213 жыл бұрын
truest thing i have heard
@mathieuaurousseau1003 жыл бұрын
Next century physicist : hey guys, you will never believe what weird function I'm trying to integrate today
@jimschneider7993 жыл бұрын
@@mathieuaurousseau100 - this century's pure mathematics is next century's applied mathematics, because of those meddling physicists.
@BriTheMathGuy3 жыл бұрын
😂So True!
@Ascientistsjourney3 жыл бұрын
@@BriTheMathGuy woah you saw my comment. Thanks bro you made my day 😊
@Ceyesse2 жыл бұрын
The screen inversion to get his writing right totally blown my mind to the point that I’m unable to focus on what he says.
@tnk4me43 жыл бұрын
Never have I understood "Sufficiently advanced math is indistinguishable from magic" more than this very moment.
@GreenCaulerpa3 жыл бұрын
Except the original quote was “Any sufficiently advanced technology is indistinguishable from magic” from Arthur C. Clarke‘s book „Profiles of the Future: An Inquiry into the Limits of the Possible“ (1962). But I agree this integral is pretty much nightmare stuff if you haven‘t seen once how to solve it.
@tnk4me43 жыл бұрын
@@GreenCaulerpa Yes thank you for explaining the joke. You get an internet cookie. Congratulations.
@GreenCaulerpa3 жыл бұрын
@@tnk4me4 yummy, thanks for that cookie!
@rmxevbio58892 жыл бұрын
@@GreenCaulerpa nice quote!
@dmk_573621 күн бұрын
would you believe that small language models be able to solve such integrals? (phi-4 can, qwq32b too), i think rStar-Math (7b!) probably able too, p.s. initially gemini-2-thinking gives slightly less optimal result (sum₀^{infinity}(1/(n+1)^(n+1)) but after request to simplify by changing sum limit, it write same formula as shown here)
@az0rs3 жыл бұрын
Holy cow that’s the prettiest integral I have ever seen
@BriTheMathGuy3 жыл бұрын
I think so too!
@mathe.dominio47652 жыл бұрын
👌
@turbostar1012 жыл бұрын
And he’s doing it backwards!
@eduferreyraok2 жыл бұрын
I would took a little twist over the improper integral, by applying a laplace transform which matches with the definition : F(s) = L { f(t) } = integral from 0 to inf of f(t). e^(-st) dt .
@ilyaxi3 жыл бұрын
What's most fascinating is the way he looks to be writing from right to left for us. It's surely inverted but stil.. Thanks for the vid
@cnvrgnt3 жыл бұрын
That was NOT the result I was expecting form this. Absolutely beautiful
@BriTheMathGuy3 жыл бұрын
Glad you enjoyed it!
@kaasmeester59032 жыл бұрын
It is. But I still hate integrals :) I never had much issues with other mathematics (up to a masters in EE) but integrals always turn into these crappy little puzzles that apparently I'm just to dumb to solve.
@mrnogot42513 жыл бұрын
2:40 dude nice thank you for being aware that you can’t just interchange infinite sums and integrals willy nilly.
@HeinrichHartmann3 жыл бұрын
He did not give an argument, though. He just mentioned "uniform convergence". But why would this sum converge uniformly? ln(x) has a singularity at 0, so I am not sure about uniform convergance on [0,1].
@grekiki3 жыл бұрын
@@HeinrichHartmann Series for e^x converges absolutely
@markusdemedeiros85133 жыл бұрын
@@HeinrichHartmann I can try to fill in the details for anyone interested: x log(x) is bounded on (0,1]: I will not do this here but it is concave up, has a minimum, and the limit at both 0 and 1 is 0. Therefore there's some closed interval containing all values of x log x for x in (0,1]. The power series of e^x converges uniformly on any closed subinterval of it's interval of convergence R, so the series for e^(x log x) converges uniformly for x in (0,1].
@holomurphy223 жыл бұрын
@@markusdemedeiros8513 One could just say that x log(x) is continuous on (0,1] and can be extended continuously to [0,1] as it converges to 0 in 0. The extended function is bounded because of 'extreme value theorem' and thus x log(x) is bounded on (0,1] I may be misspelling things a bit
@onradioactivewaves3 жыл бұрын
@@markusdemedeiros8513 thanks, I appreciate that summary.
@lucidmath54812 жыл бұрын
we need more integrals like this, this is amazing
@tommassspunis81843 жыл бұрын
Damn i got stuck watching this video and the integral of e^-x^2 in loop because at the end of each video the guy says “click on the video on the screen” and its an infinite loop :D
@BriTheMathGuy3 жыл бұрын
You've fallen into my trap!!
@Muhahahahaz11 ай бұрын
Oh no… I actually just arrived at this video from a different video, but I could end up in the same loop as well Next step: make sure that every sequence of video links eventually leads to this specific loop. Reminds me of the Collatz Conjecture… 🤔
@engr.rimarc.liguan17953 жыл бұрын
This was the cutest introduction of solution I have ever seen in addition to the handsomeness of the one who introduced it. 😅🤭 Bravo!
@sourabhparadeshi41624 жыл бұрын
I have my term exams in few days and watching this is satisfying ❤️
@tamazimuqeria64964 жыл бұрын
Same here, good luck
@sourabhparadeshi41624 жыл бұрын
@@tamazimuqeria6496 good luck
@BriTheMathGuy4 жыл бұрын
Best of luck all!!
@heh23933 жыл бұрын
How was it?
@nikned27th743 жыл бұрын
Nice result, but now you should explain what is the value of the infinite sum 🛡️
@johannes81443 жыл бұрын
It's maybe a bit late, but the value is round about 1.2912859970626636
@zebran43 жыл бұрын
@@johannes8144 Thank you! Did you compute that analyticaly or numericaly?
@polychromaa3 жыл бұрын
@@zebran4 It’s not possible to compute the value analytically as of this moment.
@user_27932 жыл бұрын
@@zebran4 By analytically you mean in terms of "non trivial" functions/expressions? If so it's very unlikely this can be expressed like that, just as a gut feeling
@zebran42 жыл бұрын
@@user_2793 Yes. By trivial expresions too.
@Roboboy-v63 жыл бұрын
As an engineering student my first instinct was to use a euler's method of approximation cause "fuck that work" LOL
@adamuhaddadi53323 жыл бұрын
stupid approximateurs >:(
@bowenjudd10283 жыл бұрын
It’s ancient, but it works
@chungus4783 жыл бұрын
You know you're an engineer when using π=3 does not seem like an approximation
@bowenjudd10283 жыл бұрын
@@chungus478, and a mathematics or physics student if it does.
@kthegreat69420Ай бұрын
uncivilized imbecile!
@sebastienruhlmann39172 жыл бұрын
The actually important explanation for interchanging sum and integral is brushed away like nothing. This took away the beauty of it.
@ankitbasera84703 жыл бұрын
I really admire the way you explain, not in a hurry
@HaLKer52 жыл бұрын
Wow, this was much better than i expected! Truly beautiful!
@EpicMathTime3 жыл бұрын
0:17 Well, we don't _have_ to. The power rule gives xx^(x-1) = x^x, the exponential rule gives ln(x)x^x, so the total derivative is the sum: x^x + ln(x)x^x.
@qq30883 жыл бұрын
That works for x^x and x^(-x). But does this work for any derivative of f(x)^f(x)? Or only those cases?
@EpicMathTime3 жыл бұрын
@@qq3088 It generally works. It doesn't have to be exponentiation, and the functions don't need to be the same. It's a general property of differentiation that is used extensively. In other words, every derivative of a function with multiple instances of x can be realized as the sum of all "partial derivatives" with respect to each instance of x.
@qq30883 жыл бұрын
@@EpicMathTime l never knew this!
@dawnstudios78133 жыл бұрын
@@EpicMathTime "every derivative of a function with multiple instances of x can be realized as the sum of all partial derivatives with respect to each instance of x", damn that looks like a powerful statement. Do you know a proof for this?
@EpicMathTime3 жыл бұрын
@@dawnstudios7813 The simplest way to see this is to replace each instance of x with a separate variable (say x, y, etc), and take the total derivative with respect to t. Then, set x = y = ... = t. This collapses the total derivative to the special case of the single variable derivative. This idea underpins differentiation very intimately. You're already doing it when you take any derivative, we just don't phrase it that way. For example, let's take the derivative of sin(x)cos(x) using the statement you just quoted. I'll treat the first instance of x as a constant, making sin(x) a "coefficient", so that 'partial derivative' is -sin(x)². Now I'll treat the second instance of x as constant, and likewise, that 'partial derivative' is cos(x)². Hence, the derivative is the sum of the "partials": cos(x)² - sin(x)². Although I phrased it in this different way, what we did there is precisely the product rule. In other words, the product rule itself is a specific instance of doing the quoted statement.
@Chrisuan3 жыл бұрын
Love your content! You can really feel your love for the math
@BriTheMathGuy3 жыл бұрын
Glad you enjoy it!
@miguelcerna74062 жыл бұрын
I find this so pretty. Almost like discrete sum (over all integers) of sinx/x = pi and integral (-inf to +inf) of sinx/x also equals pi. Amazing and yet baffling.
@이름-x6s2 жыл бұрын
I am a university student in Korea. I was always interested in math, and I happened to see your KZbin while I was looking for a related KZbin while preparing for a math test. I think there are a lot of fun and informative contents. I hope your KZbin will be better and I will continue to look for it often. Thank you!
@limagabriel72 жыл бұрын
do u guys learn calculus in high school in korea?
@이름-x6s2 жыл бұрын
@@limagabriel7 Yes, I do learn, but for example, in the case of calculus that utilizes two or more variables, I learn properly in college.
@uggupuggu2 жыл бұрын
Why are you named Apple Boss
@PunmasterSTP3 жыл бұрын
Wow, that was sum-thing else; thank you so much for sharing!
@BriTheMathGuy3 жыл бұрын
Glad you enjoyed it!
@carljohanr3 жыл бұрын
Really nice results - I assume there is no closed form for the sum, but it made me a bit surprised at the end that you never touched on that topic.
@assasin1992m3 жыл бұрын
There is, it equals sin(pi) / gamma(pi/2)
@captainhd97413 жыл бұрын
@@assasin1992m What is sine doing here? 🤔
@captainhd97413 жыл бұрын
@@assasin1992m makes me wonder if there is a complex extension for z^(-z) integral
@ha14mu3 жыл бұрын
Isn't sin(pi) 0?
@assasin1992m3 жыл бұрын
@@ha14mu yes, but the limit toward pi in this expression converges to a non zero result
@joshuaisemperor4 жыл бұрын
blew my mind. Never seen summation and integrals after each other.
@BriTheMathGuy4 жыл бұрын
Pretty cool right?
@joshuaisemperor4 жыл бұрын
@@BriTheMathGuy yeah but it also feels intimidating for someone who still has to pass his Calc 2.
@BriTheMathGuy4 жыл бұрын
You can do it though!
@sciencewithali49163 жыл бұрын
I am genuinely getting addicted to your videos !
@BriTheMathGuy3 жыл бұрын
Glad you like them!
@Francesco-bf8cb3 жыл бұрын
I'm here to comment just to make your video more popular
@BriTheMathGuy3 жыл бұрын
Thanks so much!
@noone82533 жыл бұрын
Got a similar problem in a calc 2 exam, I was very confused and thought it was unsolvable, still processing how to get a numerical value for the solution, very nice video!
@marshian__mallow26242 жыл бұрын
For an integral like that. You don’t get a numerical value
@FatihKarakurt3 жыл бұрын
Glass pane works really well. If you can dim the lights over your hand it will be much better.
@K_V-S8 ай бұрын
*We can keep going on exploring & doing maths .. cuz it only demands three qualities of our mind* 1. *Curiosity to know* 2. *Using only knowledge i.e. No belief system* 3. (most important) *Focused mind to dig deep into the question*
@perveilov3 жыл бұрын
Wow, this is my kind of rollercoaster I enjoyed during lockdown, thanks math man
@BriTheMathGuy3 жыл бұрын
Glad to hear it!
@JayTemple3 жыл бұрын
I love the fact that a video about calculus was interrupted by an ad that talks about partials (dentiures).
@BriTheMathGuy3 жыл бұрын
😂
@ejb79693 жыл бұрын
That's because calculus is a subject you can really sink your teeth into! And if anyone is thinking "That joke really bites", I beat you to it. Chew on that one!
@pvshka3 жыл бұрын
Friggin high school maths still giving me headache. Good job
@energyeve21523 жыл бұрын
Thank you for sharing this beauty. Keep shining brother
@BriTheMathGuy3 жыл бұрын
You bet!
@jesskady15852 жыл бұрын
Even if you know all of these properties, there is so much knowledge that goes into applying them in ways that are helpful. Can't imagine figuring this out!
@drinkchan48223 ай бұрын
the pause at 5:50 was so relatable haha struggling to do simple differentiation after doing many things that are a lot more complicated
@knvcsg18393 жыл бұрын
That answer is beautiful.
@lukekolodziej96313 жыл бұрын
I honestly think I'm more impressed by how good you are at writing backwards. LOL! Good video
@destructiveodst11993 жыл бұрын
He’s not writing backwards it’s just mirrored lol
@Unifrog_3 жыл бұрын
I'm impressed by how well he can write mirrored then /jk
@sauravrao234 Жыл бұрын
I think what is amazing is that the integral of x^x within the same limits gives the same summation but with a (-1)^n, hence having alternating plus and minsu. So the integral of this video outputs a greater value than integral of x^x within the same limits, which makes sense. Because x^-x is bigger than x^x in this interval of 0 to 1.
@adb0123 жыл бұрын
Something that surprised me more than the continuous sum being equal to the discrete sum is the bounds of those sums. The continuous sum of x^(-x) from 0 to 1 equals the discrete sum of n^(-n) from 1 to infinity... *SAY WHAT?!?!?*
@jackweslycamacho89823 жыл бұрын
It's even crazier how fast it converges. For the first 7 values of n you literally have n digits of precision, after that it the rate of precision keeps getting higher.
@captainhd97413 жыл бұрын
Care to share an example? I am admittedly too lazy to figure out the value of the sum and how fast it gets to these values.
@jackweslycamacho89823 жыл бұрын
@@captainhd9741 use desmos and input sum for sum and int for integral
@captainhd97413 жыл бұрын
@@jackweslycamacho8982 I prefer Wolfram but good idea!
What I don’t understand is how mathematicians make such amazingly leaps such as the various substitutions to get to the answer.
@braedenbertz10632 жыл бұрын
Its a lot of trial and error, looking at past results and seeing if there are parallels, and a lot of luck :)
@Rkcuddles2 жыл бұрын
A continuous sum becomes a discrete sum. Totally wish you extended the video by 1 minute to really nail that in for the younger audience that may be casually watching this fantastic puzzle
@rachit76452 жыл бұрын
Wolphram Alpha says the final sum is approximately: 1.2912859970626635404072825905956005414986193682745223173100024451369445387652344555588170411294297089849950709248154305484104874192848641975791635559479136964969741568780207997291779482730090256492305507209666381284670120536857459787030012778941292882535517702223833753193457492599677796483008495491110669649755010519757429116210970215616695328976892427890058093908147880940367993055895352006337161104650946386068088649986065310218534124791597373052710686824652246770336860469870234201965831431339687388172956893553685179852142066626416543806122456994096635604388523996938130448401015323385569895478992261465970681807533429122890910049951364103584723741679660994037428872280908239472403012423375069665874314768350298347009659693019807122059415474239188849548892043147840373896935928327449373018601817579524681909135596506205768427008907326547137233834847185623248044173423385652705113744822086069838116970644789631554803110868684680780701057034230000954776628299270222642661822130291609344850492556799951212817650810621807347685511270748919272166418829000073661836619726956875357964537813752368262924072016883803114377731170
@TheTorturer6664 жыл бұрын
maybe more like a sophomore's nightmare to some i'd imagine
@BriTheMathGuy4 жыл бұрын
😂
@FernandoRuiz-rf1om3 жыл бұрын
Does the final infinite sum converge? Awesome integral btw!
@BriTheMathGuy3 жыл бұрын
Thanks! and yes it most certainly does! (around 1.29 or so)
@sophiophile3 жыл бұрын
@@BriTheMathGuy is there an exact identity for what it converges to, or did you just get this by approximation?
@leofisher12803 жыл бұрын
@@sophiophile there is no closed form for it sadly so all you can do is solve it numerically.
@davidgillies6203 жыл бұрын
The good news is the convergence is extremely rapid. The first ten terms of the sum give you the value of the integral to about 3 parts in a trillion.
@olbluelips3 жыл бұрын
@@tBagley43 almost all this kind of stuff has no closed form
@Chapman1982Richie2 жыл бұрын
I've just finished with my Advanced Higher Mathematic course... just re-watching some of these videos for some good memories..
@BriTheMathGuy2 жыл бұрын
Great job!
@muqeetsoheb67083 жыл бұрын
Its intresting how he uses just SMALL PART of BOARD to explain such complex problems whereas for our teacher need two full boards
@Pod_TM Жыл бұрын
Uniforme convergence isn't the reason you can do the important early swap sum integral, the hypotesis are : if we note u_n to be the function inside the sum (here x^n/n!) Then we can use the theorem under the conditions that sum(u_n) converges (i believe not even necessarly uniformly), integral(u_n) converges and sum(integral(absolute value(u_n))) converges. Not a lot of these has to do with uniforme convergence
@adammohamed52562 жыл бұрын
Well done! This is really amazzzing !
@thisisnotmyrealname6283 жыл бұрын
7:08 moment of satisfaction
@sohaybelyaktini48069 ай бұрын
uniform convergence is not sufficient to invert limit and integral, because the integration interval is not a segment (ln is not defined as 0)
@danieljulian46763 жыл бұрын
I tried thinking about this in a different way. I began by viewing the original (improper) integral as something I will call L (i.e., limiting sum for the improper integral). I take log(L) and then move the log operation on the inside of the integration. I doubt this obeys all the rules for logarithmic operations on (improper?) integrals. So now I am integrating the function -x log(x) dx on the same upper and lower bounds and still calling this L. The indefinite integral of this is computed to be (x^2)/4 - (1/2)(x^2) log x. Evaluating this at the limits gives 1/4 (the limit for the second term can be evaluated at the lower bound using rules for indeterminate forms and evaluates to a limiting value of 0, there from the right. Anyway, the upshot is that L = 1/4 which makes the original integral e^(1/4) or approximately 1.28, which is close to the result from the derivation in the video, but not identical. Why is this even close? I know something I've done must be wrong, probably because the integration must invoke the complex log function in some way, at least at the lower bound of integration.
@colinslant2 жыл бұрын
That is a very remarkable and beautiful result.
@grinreaperoftrolls75283 жыл бұрын
I freakin love calculus. I thought this was gonna be really scary at first.
@elmogus5723 жыл бұрын
This channel is amazing !!!!!!
@ThomasHaberkorn2 жыл бұрын
Omg the twist at the end is quite a shocker
@kqp1998gyy3 жыл бұрын
An effective channel. Thank you
@BriTheMathGuy3 жыл бұрын
Glad you think so!
@rbrowne29982 жыл бұрын
Extraordinary! I didn't see it coming.
@arthurkassis Жыл бұрын
I'm in the sophomore year so I understand anything when start caculus, but I still loving your content, Ive always been ahead of the current math subject of my school so I tjink that watchint this will also help a bit more. For now I'm studying analytical geometry, is easy and I like, and calculus I'll some time soon
@josephhobbs468010 ай бұрын
approximately 1.29
@ashutoshkumarjha413 жыл бұрын
Love the way you speak and write.
@BriTheMathGuy3 жыл бұрын
Thanks very much and thanks for watching!
@nolanrata75372 жыл бұрын
A solution that doesn't require substitutions or knowing the gamma function is to integrate (-ln x)^n*x^n between 0 and 1 by parts n times to find that it is n!/(n+1)^(n+1) and the final results comes naturally.
@Thechinkills3 жыл бұрын
dude i graduated with my engineering degree why am I still watching Math videos? beautiful vid btw
@joaquingutierrez30723 жыл бұрын
Amazing video!!
@Abel-Ramanujan3 жыл бұрын
You made it so simple :)
@BriTheMathGuy3 жыл бұрын
Glad you think so!
@manuelaidos Жыл бұрын
d/dx (x^(-x)) = (-x)*x^(-x-1) = -x^(-x) * (1 + ln(x)) Since the integrand x^(-x) * (1 + ln(x)) cannot be simplified further, we conclude that the integral of x^(-x) cannot be expressed in terms of elementary functions. However, the integral can be expressed in terms of a special function called the exponential integral: ∫ x^(-x) dx = Ei(-ln(x)) + C
@judepazier44912 жыл бұрын
Math is so beautiful!!
@mrgadget14852 жыл бұрын
That was beautiful - and scary!
@marcremarc3 жыл бұрын
Being good in math is impressive but writing in reverse perfectly makes you more exceptional
@omarramadhan16523 жыл бұрын
He doesn't write in reverse...this happens when someone write on the glass window while you are on the other side of the window....just think about it!
@marcremarc3 жыл бұрын
@@omarramadhan1652 Nah he's just super good and he learned to write in reverse
@ThomasKundera2 жыл бұрын
I would be unable to do it by myself without guidance But the whole video was a beautiful journey where I was smiling at each new trick Just disappointed it didn't arrived to some usual function development
@terminusfinity0092 жыл бұрын
this makes me want to take out my scientific calculator
@Leeanne7503 жыл бұрын
Good explanation!
@BriTheMathGuy3 жыл бұрын
Glad you think so!
@leocai1909 Жыл бұрын
what always fascinates me is that he wrote the whole thing backwards. like how do you even do that
@scotttidwell2622 жыл бұрын
Great video, cool result. Thanks for this.
@BriTheMathGuy2 жыл бұрын
Glad you liked it!
@ExtremeAgent3 жыл бұрын
I always felt (if not knew) that integration from 0 to 1 is sum from 1 to infinity
@xxbananahanahxx30123 жыл бұрын
I like your funny words, magic man.
@AhsanAli-gu4bm3 жыл бұрын
we can easily solve it by taking natural log and apply integratiom by parts
@Deus_Auto3 жыл бұрын
It's ≈ 1.291291≈ 430/333
@guestmode867 Жыл бұрын
kzbin.info/www/bejne/onnMZmaHmteYfqM 3:18 Actually, from here: we can pull out (-1)^n/n! outside the integral and the remaining integral from 0 to 1: ∫(xlnx)^ndx becomes a variant of the gamma function: -(-1/(n+1))^(n+1) gamma(n+1) Gamma of n + 1 is also n! so the final result is: summation from 0 to ∞[ {(-1)^n/n!} * n! * -1 * (-1)^n+1 * (1/n+1)^n+1 ] n factorials cancel out and the exponents of 1 are added up: ...[(-1)^(2n + 2) * (1/n+1)^(n+1)] Since the exponent of -1 is always even as we are taking a discrete sum of whole numbers, it is always positive 1 so we can remove it. = summation from 0 to ∞ of (1/n+1)^(n+1) changing the bounds of the summation by +1 and subtracting 1 from the n terms we get: summation from 1 to ∞ of (1/n)^n Since 1/n = n^-1 Answer = summation from 1 to ∞ of n^(-n)
@jonathangrey63543 жыл бұрын
“Antideriving” *confused mathematician noises*
@FunyarinpaFoundation2 жыл бұрын
Can we just appreciate that this guy is constantly writing backwards
@justinkane2902 жыл бұрын
It's like turning a jig saw puzzle into a Rubik's cube.
@SQRTime2 жыл бұрын
Hi Justin, if interested in math competitions, please consider Finding Sum of Digits kzbin.info/www/bejne/gaiadJaCmKiIm5Y and other videos in the Olympiad playlist.
@robertmonroe97283 жыл бұрын
Try to integrate it to infinity. Integral converges. But this way will not work
@alperenerol18523 жыл бұрын
I was gonna discretize the domain and calculate the area by numerical methods.
@ronaldronald88192 жыл бұрын
Could never work that out myself but it fun to look at.
@suminhwang2 жыл бұрын
And i'm the only one who wanna know the way to use the backside screen?
@seemagupta14673 жыл бұрын
I have a question Isn't the final summation converged to something like π/ ( something) ?
@alexanderkartun-giles59613 жыл бұрын
The sum equals exactly 1.29129
@casual08153 жыл бұрын
I think you might me referring to a similar sum: n goes from 0 to infinity, 1/n^2 The sum is equal to pi^2/6.
@fredericoamigo2 жыл бұрын
Awesome vid! Good job!
@BriTheMathGuy2 жыл бұрын
Thanks for the visit!
@adhipmahanta25833 жыл бұрын
Felt like ASMR of mathematics
@HershO.3 жыл бұрын
Dude I checked on wolfram alpha and the sum is = 1.29129. See this is so cool cuz 129 is repeated. I love this.
@Timmmmartin3 жыл бұрын
Equal to 430/333 if 129 were to repeat indefinitely.
@HershO.3 жыл бұрын
@@Timmmmartin no dude this is its exact value, its not recurring. It's not particularly fascinating of a fact but its cool.
@Timmmmartin3 жыл бұрын
@@HershO. Do you have the wolfram link please?
@StanleytheCat-v8z2 ай бұрын
"You know, what if we just, ask the calculator?"
@danielmunozgeorge32282 жыл бұрын
Fun fact: those last integrals you got are not only the Gamma function but also the moments of an exponential distribution with paramater 1! probability just pops out :P
@ooflespoofle36912 жыл бұрын
"He will never cancel the n!" *spits out cereal*
@PrinceKumar-og8kl2 жыл бұрын
what a beauty!
@akankshasharma74983 жыл бұрын
Man! You love Gamma function so much 🤣🤣🤣🤣🤣
@BriTheMathGuy3 жыл бұрын
Yes I do!
@rdsmofficial3 жыл бұрын
I have no idea what is going on and im thinking of studying applied maths....
@SuperYoonHo2 жыл бұрын
definatley not MORE sophoMORE's dream out there or is it?! haha that would make my day if i had the dream of me having a dream which of i was having a dreaming that i was dreaming in my dream and in that dream i was doing this intergral😵😵
@Mkvyas12 жыл бұрын
Whole video like... Question. Which letter is next after letter A in alphabet ? Answer. Which letter is before C in alphabet ?
@DJ_Force3 жыл бұрын
That's one of those test questions where you are convinced you got lost and got the answer wrong, even if you get it right.