Brownian Motion | Part 3 Stochastic Calculus for Quantitative Finance

  Рет қаралды 4,406

Stochastip

Stochastip

Күн бұрын

Пікірлер: 22
@edyt4125
@edyt4125 Күн бұрын
Phenomenal video. I am going to use some of these visuals in lecture for my college students!
@shreyashree.d69
@shreyashree.d69 25 күн бұрын
I have taken Stochastic Calculus for Finance this Fall at my uni, and man oh man I was struggling so hard to visualize what Brownian motion is like, and here you are, like a blessing, with all these videos and I can't be more grateful! Thanks a bunch! ❤
@jesuseduardobanosgonzalez8116
@jesuseduardobanosgonzalez8116 Ай бұрын
I'm so glad I found this channel right after I took my first course on financial derivatives
@natanalbuquerque1053
@natanalbuquerque1053 22 күн бұрын
Otimo videos!
@Deepia-ls2fo
@Deepia-ls2fo Ай бұрын
Hey ! Your video looks very good, I'll make sure to watch everything later. Keep it up :)
@gensas1
@gensas1 Ай бұрын
nice vids, hope your channel takes off
@raneena5079
@raneena5079 Ай бұрын
BTW, thanks for making these videos!
@mustafizurrahman5699
@mustafizurrahman5699 Ай бұрын
Awesome
@matveyshishov
@matveyshishov Ай бұрын
Thanks! When is this model NOT applicable? Do we know what situations make this impossible? Cool accent, btw!
@maths.visualization
@maths.visualization Ай бұрын
Can you share video code?
@stochastip
@stochastip Ай бұрын
I’ve got about 7000 lines of code scattered around right now. Maybe I’ll clean it up and upload it to a github when I find the time!
@maths.visualization
@maths.visualization Ай бұрын
Will I have no problem if you upload it to GitHub like this? 🙂
@raneena5079
@raneena5079 Ай бұрын
How did you insert \|\Pi\| into the limit in the RHS of the inequality at 9:17? And why does this only work for differentiable functions?
@stochastip
@stochastip Ай бұрын
It's because when the function is differentiable, you can apply the Mean Value Theorem (shown in red). This gives you something of the form fʹ(t)²(tᵢ − tᵢ₋₁)². Then, you can factor out |Π| and say that (tᵢ − tᵢ₋₁)² ≤ |Π|(tᵢ − tᵢ₋₁)
@raneena5079
@raneena5079 Ай бұрын
@@stochastipOhh, that makes sense. Thanks for the clarification.
@raneena5079
@raneena5079 Ай бұрын
How did you get E[W_s^2] = s at 7:38?
@raneena5079
@raneena5079 Ай бұрын
Does it come from var[W_s] = var[W_s - W_0] = s, so s = E[(W_s - W_0)^2] - (E[W_s - W_0])^2 = E[W_s^2]?
@stochastip
@stochastip Ай бұрын
I used the result I proved earlier: E[Wₛ Wₜ] = min(s, t), so instead of having s and t different, I just set s = t. This simplifies to E[Wₛ²] = s. But you are right, in the case of Brownian motion, E[Wₛ²] = Var(Wₛ) = s, so you can think of it from all possible angles.
@raneena5079
@raneena5079 Ай бұрын
@@stochastip Thanks for the reply, but I was asking about how you reached the last line in the proof that E[W_s W_t] = min{s, t}.
@stochastip
@stochastip Ай бұрын
@@raneena5079 𝔼[𝑊ₜ𝑊ₛ] = 𝔼[𝑊ₜ𝑊ₛ − 𝑊ₛ𝑊ₛ + 𝑊ₛ𝑊ₛ] ⟶ (Add and subtract 𝑊ₛ𝑊ₛ) 𝔼[𝑊ₜ𝑊ₛ] = 𝔼[(𝑊ₜ − 𝑊ₛ)𝑊ₛ] + 𝔼[𝑊ₛ²] ⟶ (Distribute expectation) 𝔼[𝑊ₜ𝑊ₛ] = 𝔼[𝑊ₜ − 𝑊ₛ]𝔼[𝑊ₛ] + 𝔼[𝑊ₛ²] ⟶ (Independence of increments) 𝔼[𝑊ₜ𝑊ₛ] = 0 ⋅ 0 + 𝑠 ⟶ (Use 𝔼[𝑊ₛ] = 0 and 𝔼[𝑊ₛ²] = 𝑠) 𝔼[𝑊ₜ𝑊ₛ] = 𝑠 Hope this helps
@raneena5079
@raneena5079 Ай бұрын
@@stochastip I'm sorry if I misunderstood you, but it seems like you're using a circular argument. You use E[W_s^2] = s to prove E[W_s W_t] = min{s, t} and then use E[W_s W_t] = min{s, t} to prove that E[W_t^2] = t, which I assume is the same statement as E[W_s^2] = s.
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 684 М.
The Core Equation Of Neuroscience
23:15
Artem Kirsanov
Рет қаралды 85 М.
БУ, ИСПУГАЛСЯ?? #shorts
00:22
Паша Осадчий
Рет қаралды 1,9 МЛН
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 8 МЛН
ТЫ В ДЕТСТВЕ КОГДА ВЫПАЛ ЗУБ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 3,3 МЛН
ТЮРЕМЩИК В БОКСЕ! #shorts
00:58
HARD_MMA
Рет қаралды 1,5 МЛН
The Most Useful Curve in Mathematics [Logarithms]
23:43
Welch Labs
Рет қаралды 347 М.
Quadratic Variation for Brownian Motions
11:38
NiklasOPF
Рет қаралды 5 М.
How on Earth does ^.?$|^(..+?)\1+$ produce primes?
18:37
Stand-up Maths
Рет қаралды 377 М.
Math News: The Bunkbed conjecture was just debunked!!!!!!!
14:59
Dr. Trefor Bazett
Рет қаралды 273 М.
The "Just One More" Paradox
9:13
Marcin Anforowicz
Рет қаралды 3,1 МЛН
"A Random Variable is NOT Random and NOT a Variable"
29:04
Dr Mihai Nica
Рет қаралды 54 М.
Differential Equations: The Language of Change
23:24
Artem Kirsanov
Рет қаралды 82 М.
БУ, ИСПУГАЛСЯ?? #shorts
00:22
Паша Осадчий
Рет қаралды 1,9 МЛН