First, let me appreciate the intellect of the presenter. This is marvelous. second, I can't belief this topic, Machine Learning can be this simplified. My idea of Neural Network initially was a very complex subject that can't be understood. Now, I assimilated every bit of this. Thank you.
@liamwelsh55656 ай бұрын
This course is not understanding machine learning. It's understanding an API that performs machine learning for you. Big difference. Actually understanding machine learning requires good understanding in statistics, linear algebra, and calculus.
@JamesHahnII5 жыл бұрын
I'm less than a week into Python after a year on JavaScript/Ember.js. Learned JS first because it was closest to HTML, CSS, etc. During that time I struggled mightily because I was always attempting to read technical papers about BERT, neural networks, etc. Became quite overwhelmed thinking I'd never be able to learn all the complex maths needed to perform the text analysis I've always dreamed of. Little did I know there were so many brilliant people who've already done the heavy lifting. I just need to learn how to call the libraries. Thank you for making these concepts so brilliantly accessible! I get it!!
@laurencemoroney6555 жыл бұрын
That's wonderful! THanks!
@MrBoooniek5 жыл бұрын
I can't believe that's it! This series can't be finished already :o Overall thank you Laurence Moroney!
@laurencemoroney6555 жыл бұрын
You're welcome! I'm going to do a Z2H on NLP next! :)
@jalbarracin5 жыл бұрын
Same feeling! --> Quality of teaching is THE BEST! we need more.
@HealthyFoodBae_4 жыл бұрын
Please do more tutorials ❤️❤️
@VikasKumar-ef1in4 жыл бұрын
Every line you said was important and should be noted down as notes. Awesomeness. Long live Google.
@turuus52152 жыл бұрын
@@laurencemoroney655 Please, create courses in your free time, Mr.Laurence. The ML community needs you so badly.
@VikasKumar-ef1in5 жыл бұрын
You guys are doing awesome work for the humanity, We love you. Keep making these kinds of videos.
@laurencemoroney6555 жыл бұрын
Thanks Vikas -- Cool Icon, by the way! :)
@VikasKumar-ef1in5 жыл бұрын
Thanks Laurence.👍
@pcomitz4 жыл бұрын
This was a lot of fun and very informative. Note that the classifier does not work with images that do not come from this dataset. I took several cell phone pictures of scissors, several hands, and scaled to 150 x 150. They are all classified as paper - [[1. 0. 0.]]. Thanks for the videos and the notebooks.
@pgrudzien12215 жыл бұрын
It would be great if you keep posting those videos or even better create a series for more advanced. I loved those and learned a lot from the notebooks linked. Thank you!
@laurencemoroney6555 жыл бұрын
I'm working on an NLP series next.
@SanataniAryavrat5 жыл бұрын
Hi Prof. Laurence, you are a professor the way you teach... requesting you to create a series on application of deep learning within NLP. An intensive one.. thank you so much sir for such easy to follow and understand videos you created. God bless you.
@laurencemoroney6555 жыл бұрын
Thanks Manoj. Just started a series on NLP (released today) so your timing is good. Can't really do 'intensive' courses on KZbin, but this should be a good primer. I also have an NLP course on Coursera that goes into a bit more detail, and we're working on another super-deep one with some Google researchers that will hopefully come out in the next month or so
@hsyoutoobe4 жыл бұрын
Great lecture, thank you! for those who are looking the image augmentation code, it is done by the ImageDataGenerator class
@rohanmanchanda52503 жыл бұрын
Really explains everything...
@chrismorris52415 жыл бұрын
Life is so much better with simple explanations. Thank you.
@laurencemoroney6555 жыл бұрын
That's great! Thank you! :)
@macjonesnz5 жыл бұрын
Thank you Laurence, wonderfully high-quality training. I have the perfect real-world problem for this in my business.
@laurencemoroney6555 жыл бұрын
Great!
@aakashharish93734 жыл бұрын
Thank you so much! I really appreciate the effort you took to make this series :)
@bomber5273 жыл бұрын
Excellent series, very informative. Hope more series like this to come in future
@chriscr98594 жыл бұрын
I would like to see more lessons, please, thank you Laurence Moroney
@Pa-ow1nj5 жыл бұрын
Please keep going that awesome uploads, so helpful for us !! thank you :) !!
@laurencemoroney6555 жыл бұрын
Thank you so much! :) Next I'll do one on NLP
@bharatgoodfaith3 жыл бұрын
Explained superbly Laurence. Appreciate your efforts. Thanks.
@benjaminlee97354 жыл бұрын
Ultimate solution to improve your CNN: gigantic training dateset
@nikitasmirnov7952 жыл бұрын
The codelabs associated with this course contain a legacy code. It was challenging to go through these examples
@MiffyDad5 жыл бұрын
The best tf2.0 course ever! Super great job. Thanks Laurence
@laurencemoroney6555 жыл бұрын
Thank you so much! :)
@shinmccold5 жыл бұрын
Amazing Explanation !! Thank You so much Laurence Moroney!
@laurencemoroney6555 жыл бұрын
Welcome! Glad you enjoyed! :)
@manjushamondhe63953 жыл бұрын
haven't ever seen a more amazing video !!
@kitgary5 жыл бұрын
Nice series! But it only touches the surface of deep learning, I hope there are more more in depth tutorials later.
@laurencemoroney6555 жыл бұрын
In depth tutorials don't really work well on KZbin. I'd recommend checking out the work we've done on Coursera for that :)
Thanks for the short video. You might have covered this in the other videos (parts 1 through 3), but what guidelines can you provide for network architecture? In other words, I believe you used 4 conv2d layers in this example. Why 4 layers vs. 6 layers? Just looking to get better at this facet of modeling. Thanks again for the tips/tricks.
@laurencemoroney6555 жыл бұрын
It's a lot of trial and error. In my case I usually use enough layers in Convolutional Neural Networks to bring the image size 'down' after pooling to something quite small in order to make the dense layers fast. So, in this case my original 150x150 images ended up as lots of activated 7x7 ones
@beansbeans96 Жыл бұрын
pretty good tutorial, there were a few issues with keras but you can easily fix those by googling a bit, as far as i noticed sometimes scissors comes out as 100% rock which is not ok lol
@ankitizardar5 жыл бұрын
Looking forward to more tutorials Laurence !!!
@laurencemoroney6555 жыл бұрын
Thanks! Working on a Zero-to-Hero for NLP at the moment
@robinbrosche2385 жыл бұрын
great tutorials! i wish you'd do way more episodes, maybe perhaps in a longer format
@laurencemoroney6555 жыл бұрын
There's the TensorFlow Specialization on Coursera that I teach for that purpose. Longer form doesn't work as well on KZbin.
@OmkarPattanshetti4 жыл бұрын
really great video! the content is so simplified and well-explained!
@Seanomarachain4 жыл бұрын
Thank you Laurence. I really enjoyed following along.
@holographicsol27472 жыл бұрын
Thank you for your time and effort, I have learned because of you
@nisarahamad14555 жыл бұрын
Awesome explanation sir. I was struggling to start with DL, i got my path by these videos thanks a lot... And when can we expect NLP session in python.
@laurencemoroney6555 жыл бұрын
I'm working on an NLP Zero-Hero next. Super busy October, so I hope to film and publish in November.
@nisarahamad14555 жыл бұрын
@@laurencemoroney655 thank for your response sir. I am eagerly waiting for your videos...😊
@samb.64254 жыл бұрын
Amazing 👍🏻 thx for making it clear, simple and SHORT👏🏻
@xinyuanwang38054 жыл бұрын
Thanks for sharing. I also wonder where the notebook is.
@xinyuanwang38054 жыл бұрын
I can't find the notebook link below... Can you reply the link for me?
@RobinYoulton5 жыл бұрын
Excellent series, really well presented, thank you for the tuition Laurence.
@laurencemoroney6555 жыл бұрын
My pleasure!
@davidrobertson59965 жыл бұрын
This is really excellent. Thanks very much, Laurence.
@laurencemoroney6555 жыл бұрын
Very welcome, David! :)
@girrajjangid46815 жыл бұрын
It's really helpful for us if you provide full deployment model of ML to production level. Laurence moroney thank you for this video 😄
@laurencemoroney6555 жыл бұрын
Check out my friend Robert Crowe's videos on this channel
@nitinrai60935 жыл бұрын
Oh great! I hope if you could explain more about NNet designing and activation functions
@nitinrai60935 жыл бұрын
Anyway, Nicely Explained
@laurencemoroney6555 жыл бұрын
@@nitinrai6093 Thanks! At some point I'll go into that, but in the meantime, I recommend Francois Chollet's book "Deep Learning in Python"
@nitinrai60935 жыл бұрын
@@laurencemoroney655 #Thanks Downloaded 🙃
@BapiKAR4 жыл бұрын
Thanks a lot for the series. You are a nice educator...
@TheRanaTouseef Жыл бұрын
You earned the subscribe hit from a person who has never ever bothered to subscribe
@ShadArfMohammed5 жыл бұрын
Thanks for spreading the knowledge 😊👍
@laurencemoroney6555 жыл бұрын
Welcome!
@joafin192 жыл бұрын
Thank you for the video. I have one question, how did you choose to have 4 layers of 64 64 128 128 convolutional layers and 4 maxpooling? I think there are 4 convolutional layers so there are 4 max pooling layer but I am not sure why 4 layers are selected for this example. Is there a guideline for this selection? Thanks.
@ritompaul30545 жыл бұрын
Sir, can you please make me understand the significance of the last element i.e. 3 in the input_shape tuple. You may suggest more videos or a notebook to understand those stuff in more detail. And thanks for the short series containing a huge amount of information.
@girrajjangid46815 жыл бұрын
Please make a video on implement ML model from script to deployment. Small discription is also enough.
@laurencemoroney6555 жыл бұрын
Check out Robert's TFX series
@TensorFlow5 жыл бұрын
Here's the first video in the TFX series Laurence mentioned! kzbin.info/www/bejne/g6nOZaSjhMRkeJY
@hemantpatel14135 жыл бұрын
Thank you for this wonderful content but how do i learn more?????
@paulozoio47275 жыл бұрын
Great stuff! Though, I missed the final step which is to convert the trained algorithm into TF lite so we can use it in a mobile app :-)
@laurencemoroney6555 жыл бұрын
Haha, good point. Working on a TF Lite course at Coursera which covers some of that. Coming soon...
@gurjeet3334 жыл бұрын
Hi Laurence, Thanks for these wonderful videos. I had an observation Upon executing the code for exercise 8 for Fashion MNIST dataset, Observing the following error TypeError: '>' not supported between instances of 'NoneType' and 'float'
@cosmicnavigator801 Жыл бұрын
Thanks Laurence Moroney.
@awismritParida4 жыл бұрын
How to decide how many convolution layers to add and how many filters to place in each convolution layer?
@JeXuZ4 Жыл бұрын
This was an awesome but, weirtly, very short course. I loved it, Ilearned a lot but felt like the explanations sometimes could be more extensive. Anyway, thanks!
@javiersuarez84155 жыл бұрын
Thank you. Where do I find the videos for Tensorflow 2.0.? Hope more videos to come, with advanced networks like GANs, Reinforcement learning or putting this image recognition model on a cellphone.
@laurencemoroney6555 жыл бұрын
Stay tuned to this channel, use tensorflow.org, check out Francois Chollet and Aurelien Geron's books, and check out my Coursera courses :)
@BrijeshSoni231213065 жыл бұрын
Nice sweet and small Playlist, here I have to know about that the does Tensorflow have any Shape classification dataset, not handwritten drawings but actual images like circles, triangles and so on.... or else help with how to create the custom dataset.
@laurencemoroney6555 жыл бұрын
Got lots of pictures of circles, triangles etc, and build a classifier. SHould be pretty easy and very similar to this.
@luis96xd4 жыл бұрын
I liked these tutorials! 😄
@JaZoN_XD4 жыл бұрын
Using CNN, are there ways to identify things in a picture that's in various shapes/resolutions?
@radouane55915 жыл бұрын
Good introduction Laurence. Thanks
@laurencemoroney6555 жыл бұрын
Thanks!
@torstenknodt68662 жыл бұрын
Great video. Would be good to also have examples for e.g. having one additional file per image containing the labels in some arbitrary format and/ or having mixes of labels as categories and floats.
@sethrd9994 жыл бұрын
So are these updated for Anaconda python with pilow vs pil on python3?, these tutorials are super helpful to get going in this subject. Thanks for the series.
@sethrd9994 жыл бұрын
As an update ( might help someone else ). I was able to get the model to work with pillow I added 'from PIL import Image', I was then able to take the compiled model and load it into a python example which uses a webcam ( 720p ) via OpenCV and get the same results as the image loader.
@alostsoul9594 Жыл бұрын
Sir If the given Image does not belong to any of these classes how does machine respond to it?
@Vl4doski4 жыл бұрын
Can anyone tell me where's the Jupyter Notebook of this video? Can't find it!
@josehidalgorodriguez8025 жыл бұрын
Could you make a video on how to segment an image? That is, the environment is removed and only the outline of an animal or object remains. Thank you...
@laurencemoroney6555 жыл бұрын
Don't have anything like that in the pipeline, sorry. But what I am working on is tutorials to show bounding boxes around classified items in images if that's helpful.
@josehidalgorodriguez8025 жыл бұрын
@@laurencemoroney655 Excellent if you train the model from scratch, it will help us a lot, thanks. Greetings from Colombia
@VikasKumar-ef1in5 жыл бұрын
If there is any video or can you make any video on Neural network with full explanation of basics like convolution, Kernal, padding, strides, channels, max pooling...
@laurencemoroney6555 жыл бұрын
This series covered most of that...
@ar-ienterprise30115 жыл бұрын
I am gonna implement this for the Augmented reality application. thank you.
@laurencemoroney6555 жыл бұрын
Good luck with it!
@meynoush535 Жыл бұрын
Warmest thanks and greetings.
@toribashers5 жыл бұрын
I have a question that is bugging for the past couple of weeks. How do I work with TFRecords data. I`m creating a dataset from within Earth Engine and exporting it as a TFRecord, images on a 256x256 format and I`m trying to create a classifier by feeding it to my neural net but I`m really confused on how to use the data that I exported on TFRecord format. If anyone can give me any explanation on how to use it, I`d appreciate it so much. Thx!
@laurencemoroney6555 жыл бұрын
There's a TF Record codelab here -- take a look: colab.sandbox.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/load_data/tfrecord.ipynb
@manonabraxos2 жыл бұрын
The link for the dataset that the colab uses doesn't exist anymore. How else could I access the dataset?
@ismaelbesharat7784 жыл бұрын
This was a wonderful series.It is just that i am trying to run this on my jupyter notebook, and i am using my personal dataset of hand gestures like right_click, palm, left_click. My directory looks like this Dataset-->right_click-->seq_01= images, and so on like this but when i run the exact code you mentioned. I get an error on the last line i.e history = model.fit_generator(train_generator). The error is as follows InvalidArgumentError: logits and labels must be broadcastable: logits_size=[32,3] labels_size=[32,2] [[node categorical_crossentropy/softmax_cross_entropy_with_logits (defined at :1) ]] [Op:__inference_train_function_1195] Function call stack: train_function kindly help.
@zakashii2 жыл бұрын
If I had to create an Object Detection device using ML, would I have to re-train the machine everytime I switch said machine on?
@muhammadzubairbaloch32245 жыл бұрын
Great work Sir
@laurencemoroney6555 жыл бұрын
Thanks!
@vi.kran.t4 жыл бұрын
Where I will get demo code which converts text present in image into actual text ?
@thomashonorkatula4016 Жыл бұрын
Thank you laurence
@MeThatBoSS694 жыл бұрын
Hey Laurance, I copied the code from the notebook to my own jupyter notebook, and there it takes about 5 minutes per epoch, wheras on the colab notebook it takes a couple of seconds. how can this be?
@JustMe543284 жыл бұрын
thank you Laurence!
@rajansaharaju14275 жыл бұрын
Thanks for this episode
@laurencemoroney6555 жыл бұрын
Welcome!
@rohanj48395 жыл бұрын
Can I do this without tensorflow
@laurencemoroney6555 жыл бұрын
You could, but it might be much more difficult ;)
@JaapHaitsma4 жыл бұрын
Please put these tutorials in a playlist
@ericlima75725 жыл бұрын
Muito bom, bora testar!
@laurencemoroney6555 жыл бұрын
Obrigado!
@f4edu563 жыл бұрын
How can I use my own dataset (images)? I mean from my local drive.
@WhenThoughtsConnect3 жыл бұрын
imagine the work and resources in trying to create a dataset. xD but its good to know we can make ai that can only see something 28x28. we are now in the era of 8bit AI
@Szhaoenen5 ай бұрын
thank you!
@timonstwedder32014 жыл бұрын
Hey Laurence, the code you provided has been training for over 4 hours now, and is still at epoch 1. Why is that?
@benjaminlee97354 жыл бұрын
My Ubuntu has one 1080ti and it took about 64 seconds for one epoch. Also I've noticed that adding Conv2D will dramatically increase training time, comparing to previous Dense only networks. If one epoch takes you 4 hours, I think very likely that you are training on a CPU.
@datadrivenmanagement62303 жыл бұрын
Thank you Sir
@karanmotwani37782 жыл бұрын
I am unable to download the zip file. I think they are removed .Please help
@priyahariharan74204 жыл бұрын
Hi, thanks a lot for this understanding of NN . Could you please guide me how to train a model for images of persons and recognize the faces and match them with the existing db. As also, if possible also detect the emotions of humans in videos. Would be very helpful to me please. Thanks a lot again!
@laurencemoroney6554 жыл бұрын
I don't really like to do facial recognition, sorry. For emotions -- it's very similar to rock/paper/scissors. Get labelled images of 'happy', 'sad', whatever, and organize them in subdirectories etc.
@PythonEverywhere5 жыл бұрын
Sir is it possible to train InceptionV3 with my classes and get output as my classes and previously trained classe together? if I have 5 classes and InceptionV3 has 100 classes then I want my output as 105 classes
5 жыл бұрын
You can recreate the inception architecture and train it from scratch with all the classes you want but I would require a huge computing power and a vast dataset. I would use inception for the classes it was trained and for new classes I would create a little network using transfer learning. Then, I would set a threshold for changing from Inception to the new classifier. I mean, if the max class probably of inception for an image is 0.3 I would send it to the second classifier
@tnpscmaterial6274 жыл бұрын
Sir, please help me to build image classification codes to classify in single scene of video into image and different kind of activities in particular scene
@joseortiz_io5 жыл бұрын
This is awesome! I hope to attend the upcoming O'Reilly Tensorflow World Conference and surround myself with great people! 😁👍
@laurencemoroney6555 жыл бұрын
See you there!
@ashimkarki96525 жыл бұрын
How do we find the problem required deep NN not 1 hidden NN?
@laurencemoroney6555 жыл бұрын
To be honest, there's a lot of trial and error and/or reading papers that discussed how they did it.
@alfonsoantolinez40203 жыл бұрын
Hi guys, I'm trying example notebook and I get this error uploaded = files.upload() Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. MessageError: TypeError: google.colab._files is undefined Some piece of advice? Thanks
@INGJHR5 жыл бұрын
How can I enclose what the model said in a rectangle? Thank you..
@laurencemoroney6555 жыл бұрын
Take a look at models for 'Object Detection' which return the parameters for a bounding rectangle.
@chintanparmar75333 жыл бұрын
i am trying with a different data set where train data has 27 images each in Train/bag, Train/bat, Train/bathtub while validation/test data has 9 images each in Test/bag, Test/bat, Test/bathtub. I am getting below error any suggestion what could be root cause of below error -> InvalidArgumentError: logits and labels must be broadcastable: logits_size=[81,3] labels_size=[81,4] [[node categorical_crossentropy/softmax_cross_entropy_with_logits (defined at :61) ]] [Op:__inference_train_function_2287] Function call stack: train_function on below line of code-> history = model.fit(train_generator, epochs=25, steps_per_epoch=20, validation_data = validation_generator, verbose = 1, validation_steps=3)
@kartikparsoya42395 жыл бұрын
i am not able to download those files by that code
@laurencemoroney6555 жыл бұрын
The bitly links? I just tried them and they're fine. Can you try again?
@adammcallister81954 жыл бұрын
What if I don't want to use your dataset, how do I load my own?
@laurencemoroney6554 жыл бұрын
Sure, you can do that...just arrange your images in subdirectories just like I did.
@gwangjinjeong78785 жыл бұрын
Thx! good lecture
@laurencemoroney6555 жыл бұрын
Welcome!
@yangzezhao75524 жыл бұрын
I cant't see the link.
@umamaheswari88264 жыл бұрын
When I tried to use model.predict(img, batch_size=10) in which I inputted my own image, it returned : IndexError: list index out of range. It would be great if someone could help me out.
@tsaed.91704 жыл бұрын
Your input data has the dimensions that could not fit into the first layers of the MODEL. (You will have to use the images of exactly similar dimensions as are defined in the Input Layer you built.)
@dhrubojyotidey82675 жыл бұрын
Is this possible on the raspberry pi 4B model?
@laurencemoroney6555 жыл бұрын
Yes it is! Check out our content on TensorFlow Lite in particular for Pi stuff
@ramakantprasad36943 жыл бұрын
What does Dropout do ?
@AnandBaburajan5 жыл бұрын
Thank you!
@laurencemoroney6555 жыл бұрын
Welcome! :)
@INGJHR5 жыл бұрын
You can upload a video importing the model to Android studio please
@laurencemoroney6555 жыл бұрын
Check out the IO talks on TensorFlow Lite on this channel
@catafest4 жыл бұрын
yes, good work ... more tutorials , maybe training a neural network to generate art or music 🧠🤖
@laurencemoroney6554 жыл бұрын
Check out the Magenta project
@balakrishnakumar15885 жыл бұрын
One query regarding the CNN codes, in the video we have first and second layers with 64 filters each. So when I pass an single image through the first layer, we get 64 outputs. Then do we pass those each of the 64 outputs to the 2nd layer having 64 filters and . So the total number of outputs from the second layer is 64x64 = 4096, means for once single image we found out 4096 features by the end of 2nd CNN layer ? Thanks for the visited Mr.lawrence.kindly help me to sort out this issue.
I was disappointed when you said that this is the fourth and final video in this series of zero to hero with tensorflow. What's coming up next? Plan something along the lines of LSTM and GRU.
@laurencemoroney6555 жыл бұрын
Gonna do some NLP stuff, so LSTM will be in there for sure