A sensible teacher . Perfect for scientific teaching.Thanks a lot.
@laurencemoroney6555 жыл бұрын
Thank you! :)
@mihir240519693 жыл бұрын
I am a non-IT, Mechanical Engineering Professional (27 Years in Manufacturing Industry) and very thankful for the wonderful way of teaching that I ever had in my life!.
@biomystical5 жыл бұрын
I knew this before, but now I feel like I am really learning it in practice, good teaching style
@laurencemoroney6555 жыл бұрын
Thanks!
@kciudaras5 жыл бұрын
Waiting for the next episode! Such a great series
@laurencemoroney6555 жыл бұрын
Thanks!
@kaelhop5 жыл бұрын
Introducing convolutional neural networks (ML Zero to Hero, part 3): kzbin.info/www/bejne/rpC5o5qNibCen68
@ConsultingjoeOnline4 жыл бұрын
I wish I would have discovered this series sooner! Thank you!
@chrismorris52415 жыл бұрын
Very excited and appreciative of this series. Doing a great job of simplifying a complex topic. Thanks again and can't wait for the next episode!
@laurencemoroney6555 жыл бұрын
Thanks, Chris!
@alkhashtee5 жыл бұрын
I don't understand who are those people and what they thinking to dislike this of piece of treasure. Come on and show me what you can do better, instead of just being lazy/jealous and dislike the video. Go ahead Laurance Moroney and keep doing what you doing we all love you and Josh Gordon.
@LaurenceMoroney5 жыл бұрын
I do understand it somewhat -- and it's typically people who *already know* this stuff are critical of it being explained this way. In order to keep it simple, I'm trying to layer in concepts, but when they don't see those concepts explained in this video, they think that it is incomplete. That's something that we call 'Curse of Knowledge' at Google, and I'm doing my best to avoid it here. I'm sorry to the folks that don't enjoy it, but you aren't the target audience for this :)
@eliasdimadis8307 Жыл бұрын
Great teaching! At last, after years of searching found a great tutorial for that topic! Keep on the great job..
@amankumarchourasiya22795 жыл бұрын
Thankyou so much for providing this material. We need tutors like you.
@laurencemoroney6554 жыл бұрын
Thanks!
@rickkamlunglee4 жыл бұрын
Great tutorial and exercise. Just one note on the last exercise (exercise 8) with the following line: if(logs.get('acc')>0.9): Resulted in Error: TypeError: '>' not supported between instances of 'NoneType' and 'float' Quick google pointed be to change 'acc' to 'accuracy' as follows: if(logs.get('accuracy')>0.9): Then it works. Hope it helps my fellow students...
@laurencemoroney6554 жыл бұрын
Change to 'accuracy' and try.
@ayrtonfithiadisedjati53664 жыл бұрын
Thank you very much!
@raviverma71972 жыл бұрын
thank you to the whole team of tensorflow
@kitulinokitulino33605 жыл бұрын
Great video. Last number of Table showing softmax at minute 5:54 should be 0.978 and not 9.78. These are probabilities and should sum to 1
@laurencemoroney6555 жыл бұрын
Good point!
@kitulinokitulino33605 жыл бұрын
Laurence Moroney you’re most welcome :)
@mistsu11714 жыл бұрын
Oh I didn't know it was supposed to sum to 1. I thought it's just a random value...
@sansha26874 жыл бұрын
@@laurencemoroney655 it is not Good point. All the numbers in the row totals upto 10 which is number of labels, you can check 9.78+0.22=10.
@rohanmanchanda52503 жыл бұрын
Honestly, these videos are better than the codelabs,
@laurencemoroney6552 жыл бұрын
Thanks!
@willv88 Жыл бұрын
Everything is explained nicely except why the middle layer is chosen to be 128. What if this middle layer was 32, or 300? From a mathematical perspective I understand that more functions likely results in better fitting, but how did you determine the ideal number to use? Also, what if we just skipped this second layer entirely?
@torstenknodt68662 жыл бұрын
Would be great if you could explain why 128 is perhaps a good value when having these 28*28=728 inputs and you want 10 categories at the end.
@thedinosham2 жыл бұрын
784
@gia7026 Жыл бұрын
😊ol😊😊
@kitgary5 жыл бұрын
After watching this series, I can tell that machine learning is so easy and everyone with enough practice and passion can become a machine learning engineer!
@laurencemoroney6555 жыл бұрын
I believe so! Thanks! :)
@inquisitivelearner8649 Жыл бұрын
Loss function - How good/bad the model did Optimizer - generate new parameters for the functions to do better Relu- Rectified linear unit Softmax - Picks the bigge at number in the set Model.predict
@iamrising71764 жыл бұрын
Your job description should be: Make Hard Concepts Look Easy. Thanks so much.
@kzdm52554 жыл бұрын
Why are there only 127 functions when there are 28x28 pixels?
@Themojii4 жыл бұрын
Great video. Just one typo. Time 5:37 is 0.978 (not 9.78) which is a probability score where all those 10 numbers should add up to 1.
@shrikantrane96013 жыл бұрын
Can you elaborate how exact 128 is ? From how it come in picture ?
@rabinadk14 жыл бұрын
Softmax doesn't set largest to one. If you just want to get the one with highest probability you can choose from the values of z. Softmax returns probability of each class.
@manchalanagesh95854 жыл бұрын
Ure super , I searched for these some doubts on that youtube, u be right person which u give correct knowledge, my sincere thanks to u by touching ure feets
@mohammedamirjaved84182 жыл бұрын
Laurence Moroney! You are just Love..
@su-swagatam4 жыл бұрын
I was following along with the code and when I tried to evaluate the test set with the model I got a type error:'float' object is not iterable should I cast it as an int? Great content by the way...
@laurencemoroney6554 жыл бұрын
Which line specifically?
@basharwadan87894 жыл бұрын
try to divide train_images and test_images by 225.0 train_images, test_images = train_images/255.0 , test_images/255.0
@felipeletelierbasaez63695 жыл бұрын
Where have you been this whole time Sir? Can't wait for the next episode!
@LaurenceMoroney5 жыл бұрын
Right here :)
@weiyewang29033 жыл бұрын
Thanks for the sharing, this series really help a lot !
@krishnakhadka28022 жыл бұрын
if u tried out the code in tensorflow 2.0, there are few changes tf.train.AdamOptimizer() => tf.optimizers.Adam() if getting following error: TypeError: cannot unpack non-iterable float object add metrics i.e. model.compile(optimizer=tf.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics='accuracy') or remove test_acc i.e. test_loss= model.evaluate(test_images, test_labels)
@samjithraj74675 жыл бұрын
Good Episode.. You explained it a very simple way.
@LaurenceMoroney5 жыл бұрын
Thanks!
@psy0rz5 жыл бұрын
Awesome! Couldnt find part 3, only to realise this is brand new:)
@LaurenceMoroney5 жыл бұрын
Thanks! Coming weekly
@navidabasi4 жыл бұрын
Does anyone know why there are just 128 functions to give out a number? I mean why 128?
@oliverli96305 жыл бұрын
Will next episode explain why 128 neurons in the middle? thanks.
@laurencemoroney6555 жыл бұрын
No, sorry. The right number for a given problem is something you need to figure out.
@oliverli96305 жыл бұрын
@@laurencemoroney655 all right. thanks for answering :)
@aaronphan36255 жыл бұрын
Thanks for the material Laurence. I'm looking forward to future videos.
@laurencemoroney6555 жыл бұрын
Thanks Aaron! :)
@lethecat3 жыл бұрын
Wonderful explanations! Looking forward to more videos!
@thamizhendiranc42295 жыл бұрын
Really gave me the perfect outline for the computer vision. Thank you !!!
@laurencemoroney6555 жыл бұрын
Thanks! :)
@GoribMahi Жыл бұрын
Wonderful explanations! Looking forword to more videos.
@smartcontxlimited56585 жыл бұрын
Thanks Laurence, this is a great series, very informative.
@laurencemoroney6555 жыл бұрын
Welcome! Glad you're enjoying!
@mustafakhan58212 жыл бұрын
I didn’t get these f values. What are they and why 0-127?
@lucasmarques45213 жыл бұрын
I just didn´t understand why the number 128. It´s just a arbitrary number ?
@laurencemoroney6552 жыл бұрын
Mostly, and it's up for experimentation. Find the smallest one that gives the best results.
@pradeepjat59295 жыл бұрын
Very good series(Love Machine Learning)
@LaurenceMoroney5 жыл бұрын
Thanks!
@roningick57072 жыл бұрын
At 4:00 in the video what does adjusting the 128 value do to the training model?
@popbayern895 жыл бұрын
Hello Lawrence, Thank you so much for this series. I am new to Tensorflow and I need to use it to classify images, along with a matrix representation that represents a certain feature (analogous to XML files with Object Detection APIs) ... As I have got no idea where to start, which Tensorflow image classification script or framework would you use, if you were me?
@stepanvalerivich69995 жыл бұрын
Hey Laurence, just to clarify, does the value 128 represent the number of hidden layers we are implementing in the neural network? Looking forward to more videos!
@laurencemoroney6555 жыл бұрын
The 128 is the number of neurons in that layer, not the number of layers. The number of layers can be derived by counting the lines of code where we use a tf.keras.Layer(something)
@PritishMishra4 жыл бұрын
BEST TUTORIAL EVER....!!!!!!!!
@JamesJon11873 жыл бұрын
Isn't 5:50 argmax not softmax? Also, this course if fantastic! THanks for breaking down everything, unlike some other "beginner" courses that leave all the comprehension footwork to the student!
@laurencemoroney6552 жыл бұрын
Welcome! Argmax finds the biggest. Softmax normalizes them to add up to 1 and then finds the biggest.
@adammcallister81954 жыл бұрын
It's great to always use the same Datasets for learning, but I think I can learn quicker If I was shown how to create my own datasets and analyze them. Datasets should be called "Trainers"
@laurencemoroney6554 жыл бұрын
For images, you can just create subdirectories of images, and use these as your dataset. See the next video in this series for more details.
@rajansaharaju14275 жыл бұрын
Outstanding series
@laurencemoroney6555 жыл бұрын
Thanks, Rajan!
@lysapala28123 жыл бұрын
But how do I know, how many layers and how many neurons I need? Is it just by testing and watching, if the machine is doing its job well, or is there a trick how to figure it out?
@laurencemoroney6552 жыл бұрын
Usually by trial and error, a neural architecture search, or just a good guess :)
@dhapolapankaj5 жыл бұрын
Does the Algorithm decides which number to assign to Ankle Boot? Or How we can assign a number to specific object? Although we know the number of outputs, I'm little bit confused on assigning numeric output value!
@laurencemoroney6555 жыл бұрын
It doesn't. The person that created the dataset labelled each piece of data, so instead of labelling something 'ankle boot', they labelled it '6'. Then, when training, the NN is told, 'when you see these pixels, they're a 6', 'when you see these pixels, they're a 9', and it tries to figure out the rules that determine those mappings.
@ManojAP5 ай бұрын
Thanks sir, it helps lot
@dorg993 жыл бұрын
if we have relu and softmax in each layer- where are the model parameters/weights that will be adjusted by the optimizer ?
@laurencemoroney6552 жыл бұрын
The filter values in the convolutional layers, and the weights/biases in the 'Dense' ones
@dragon_warrior_3 жыл бұрын
dayum these videos are cool and the codelabs too
@Usle1230editz3 жыл бұрын
Amazing expert & tutor, thanks..Awesome
@laurencemoroney6552 жыл бұрын
Welcome, and thank you! :)
@davidgodri39825 жыл бұрын
Great video! I noticed some typos in the exercises code - such as in the last exercise the callback's name doesn't match callback created (i.e. [callbacks] should be [myCallback()]). I hope that helps! Please keep the videos and exercises coming! :)
@laurencemoroney6555 жыл бұрын
Thanks! Sometimes moving from code to slides stuff creeps in. Hopefully it's ok in the links.
@cygmoid5 жыл бұрын
Does increasing the number of functions in the keras.layer.Dense make the neural network accurate?
@laurencemoroney6554 жыл бұрын
It *can*, or it might be a waste of resources. That's something to experiment with.
@luisaguiar44154 жыл бұрын
Very clear. Great video
@erkutates1515 жыл бұрын
I got a question. Why any library is imported as their initials? is this a rule in programming or ease of use? import tensorflow as tf? import numpy as np? why is that?
@laurencemoroney6555 жыл бұрын
I think it's just convenience, short and easy to remember. You could call it anything you like (import tensorflow as xy)
@timothymalche89074 жыл бұрын
Good explanation but how to determine 128 functions?
@Sagar_Tachtode_7774 жыл бұрын
great teaching style, Thank you... to run this code which tool you are using?? R or Python ??
@fredmartins57224 жыл бұрын
python
@javiersuarez84155 жыл бұрын
Thank you for sharing this videos with us. I have a question Laurence, if a had a reduced set, let us say 50 samples an 2 categories, it is worth it to increase the quality of the image or the deepness of the network to improve the accuracy score? Im my case the label comes from an expensive analysis and we are tryin to find a good aproximation using a CNN.
@LaurenceMoroney5 жыл бұрын
It would very much depend on the diversity of your samples. One technique to avoid overfitting, particularly with a small set is to look at Image Augmentation in Keras.
@William_Clinton_Muguai3 жыл бұрын
I love it! AI is super-amazing!
@learnwithajwa46894 жыл бұрын
It's really helpful me in understanding the the concept
@rishisharma52495 жыл бұрын
Big Fan of yours sir Completed your deep learning. ai courses
@AllinOne-vd9oy5 жыл бұрын
Rishi bhai deep learning. ai courses ki link share kar sakte ho
@samjithraj74675 жыл бұрын
Rishi Sharma from coursera ?
@tariqshabirbhatti47935 жыл бұрын
following this current series of ML...!
@LaurenceMoroney5 жыл бұрын
Thanks!
@TejasPhase5 жыл бұрын
Thanks for this Video. Now waiting for the next one.
@LaurenceMoroney5 жыл бұрын
Me too! :)
@Superman_Kryptonite4 жыл бұрын
why 128? I didnt get it, why it couldnt be just 100?
@manfyegoh5 жыл бұрын
cant wait for the next video!
@laurencemoroney6555 жыл бұрын
Coming soon!
@luis96xd4 жыл бұрын
Amazing video, it was well explained
@kinglaw16883 жыл бұрын
Im currently learning python do I need to be good at maths to learn what you are teaching here?
@laurencemoroney6552 жыл бұрын
I don't think so. I'm not particularly good at Maths.. :P
@arifindobson5 жыл бұрын
TensorFlow rocks!
@laurencemoroney6555 жыл бұрын
It does, doesn't it? :)
@saraths90444 жыл бұрын
Sir I understood the working of the function relu on the second layer, but why is it used there?
@hamedk72285 жыл бұрын
Moroney is a hero!
@laurencemoroney6555 жыл бұрын
I'm trying... :)
@slkslkful5 жыл бұрын
thanks for this great series
@laurencemoroney6555 жыл бұрын
Welcome!
@yumquickcook5 жыл бұрын
Is there a more basic ml learning videos? These r good ,but m cmpltly new with these
@LaurenceMoroney5 жыл бұрын
These are as basic as I could do! :) Try the first 1-2 chapters of "Deep Learning in Python" by Francois Chollet for a more fundamental description
@hal_from_all_nations8 ай бұрын
Im another one who don't catch why 128 neurons in the middle layer. Great Video, thanks.
@TorIvanBoine5 жыл бұрын
Any hints on how to install tensorflow without any errors?
@alaaeddineboutout95434 жыл бұрын
why u choose 128 functions ?
@Innovativest2 жыл бұрын
sorry, where is the code he says it is in the notebook below?
@keithprossickartist2 жыл бұрын
Again, thank you.
@d3nt3913 жыл бұрын
Can someone explain to me why in the example code we are using this fashion dataset but it keeps referring to the "handwritten digits" we're trying to classify? Is this a mistake?
@michzouthins16575 жыл бұрын
Cool! Very informative! If it was also about working with tensors on Google Cloud with your own pictures! I would really appreciate it!
@LaurenceMoroney5 жыл бұрын
Later I will show working with images that are downloaded as a zip file. It should be easy to adapt that.
@amankumarchourasiya22794 жыл бұрын
Is my_images expected to be a numpy array or the array formed by reading an image using cv2 library of python? Please reply.
@laurencemoroney6554 жыл бұрын
Generally it should be structured the same as the training dataset -- so explore the format of that, and you'll have your answer. It differs based on how you train the model.
@subrahmanyamvemuri58814 жыл бұрын
This is wonderful.
@fatmabradai96012 ай бұрын
I couldn andrestand 128 and the the function f0 .. f127 how it works to get the 9 result
@Multimassar4 жыл бұрын
I did not understand the 128 part, why picking 128?
@sagar735945 жыл бұрын
Nicely done.
@laurencemoroney6555 жыл бұрын
Thanks! :)
@kalyanalladi5 жыл бұрын
Crisp and clear
@laurencemoroney6555 жыл бұрын
Thank you!
@powerhour46025 жыл бұрын
Are we no longer acknowledging the difference between ML and DL? Is DL now nestled within ML?
@LaurenceMoroney5 жыл бұрын
Not at all. I'm just trying to keep this as simple as possible by reducing the concept count. At the moment, we're at a very abstract high level where there's little difference between the two, and it would take a lot more detail before we'd need to get into the distinctiveness between them. Let's focus on teaching the concepts first so that we can understand the more advanced stuff as it appears.
@azmatsiddique35644 жыл бұрын
Hello Sir, Is it compulsory to write keras.layers.Flatten(input_shape=(28,28)) ??????? this code also work for me model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
@RandomGuy-hi2jm5 жыл бұрын
can we do the same with voice data???
@jarosawmaruszewski16785 жыл бұрын
Why not. Just series of numbers with label assigned. NN is agnostic to input nature.
@the_techelite_60973 жыл бұрын
So how does all this code look like when compiled
@Robert-ht5kd Жыл бұрын
You didn"t say what are those f0 - f127 functions.
@aliabed93944 жыл бұрын
I think that not always a computer vision system is a machine learned system, right? Thanks
@saisagole21434 жыл бұрын
Why did you specifically chose 128 functions
@bilaldmx4 жыл бұрын
Same question
@hadimasri4205 жыл бұрын
hello Laurence pls how can i know which optimizer i have to choose and which loss? im so confused pls help me
@laurencemoroney6555 жыл бұрын
The answer there is 'it depends'. My recommendation, before you understand them all, is to look at similar solutions that people have open sourced and start with the function choices they made. To learn more about different function types, and how they work, I'd recommend deeplearning.ai's specialization on Coursera taught by Andrew Ng. It was one of the primary ways I learned. :)
@iangonzalez43094 жыл бұрын
After running test_loss, test_acc = model.evaluate(test_images, test_labels), I got this error: TypeError: cannot unpack non-iterable numpy.float64 object Does anyone know why?
@donatassederevicius63134 жыл бұрын
You need to add an accuracy metric: model.compile(optimizer = tf.keras.optimizers.Adam(), loss = 'sparse_categorical_crossentropy', metrics=['accuracy'])
@KirillBezzubkine5 жыл бұрын
Waiting for the next vid. Thx
@laurencemoroney6555 жыл бұрын
On its way...
@bharath_v3 жыл бұрын
Good One!
@smhmkkh4 жыл бұрын
How do people find all these photos on e.g shoes. He used 70 thousand images of them of course its not possible to collect them 1 by 1 right?