What other playlists should I make? Also, If you think I deserve it, please consider giving this video a like. Subscribe for more content like this.
@mehedihassan7824 Жыл бұрын
can you make some videos on implementing the transformer models in code?
@joachimguth6226 Жыл бұрын
Impressive the clarity of layout and speech.
@CodeEmporium Жыл бұрын
Thanks for the kind words.
@aligharaeini59719 ай бұрын
one of the best videos ever about NN , congrats
@prashlovessamosa10 ай бұрын
your 101 series are super informative.
@martin3647martin Жыл бұрын
Would be cool if you ran though process of building a Neuron class step by step, to better understand how all parts integrate in code as we go before using more advanced libraries. So more step by step bottom up element by element building. I think it would be good way to practice learners intuition about all this. I found many of your videos highly educational. Great content!
@apollokre1d Жыл бұрын
Love the videos, liked and subscribed, looking forward to the series.
@CodeEmporium Жыл бұрын
Thanks so much! Definitely more to come every week
@rashedulhasanrijul550610 ай бұрын
Thanks for such a nice explanation
@katariya60810 ай бұрын
its the algorithm to recommend me your video
@pradnyakarve609410 ай бұрын
Hello, could you please let me know why the following error ? RuntimeError: mat1 and mat2 shapes cannot be multiplied (1x5 and 4x6) code: with torch.no_grad(): model.eval() correct = 0 total = 0 for batch_x, batch_y in test_loader: outputs = model(batch_x) predicted = torch.max(outputs, 1) total += batch_y.size(0) correct += (predicted == batch_y).sum().item() accuracy = correct / total print(f'Test accuracy:{accuracy:.2f}') class NeuralNetwork(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetwork, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out