Krish Naik sir is a competent and knowledgeable data scientist, but you are a competent teacher
@MuhammadYahyaKhan-r2m5 ай бұрын
nhi smja
@ayushmeharkure53652 ай бұрын
englis englis
@somyaagarwal29422 күн бұрын
Agreed. I like him better than him tbh
@kashifjalal8616 Жыл бұрын
Some people are like angels 😇. They just want others to take some light from them and brighten their lives.
@rohitmeharcse97729 ай бұрын
can anyone help me on this because as per now I am getting very different accuracy which is 87.5 for lr as well
@neosamosa7 ай бұрын
@@rohitmeharcse9772accuracy is not dependent only on the code but various other intrinsic stuff. you can try to change and tune your hyperparameters work with the data preprocessing your accuracy can increase.
@shubhamkumar-hx1fb2 ай бұрын
@@rohitmeharcse9772 actually trained and test datas are randomly picked up that's why you are getting different accuracy...i think this could be one of the possible reason for that
@manujkumarjoshi9342 Жыл бұрын
Frankly speaking, every data scientist knows it but the best part is you connected all the loosely coupled dots. Best Teacher, I wish I met you before.
@snehalhon3 жыл бұрын
You are reallyyyy best teacher!!!!!..... Really after learning from this video no need to watch another video ....you make it crystal clear ...thnxxxx brother ...god blessss youuuu ..
@learnenglish6992 жыл бұрын
sir ye sab eda ke bad karnaa hai ya phale he eda kar denaa hai fr data ko clean and then ye sab ????????
@kunikakhobragade69532 жыл бұрын
@@learnenglish699 he answered this in the beginning of the video
What a teacher in Data science Domain, Very very very nice
@SumanPokhrel02 жыл бұрын
What a beautiful video sir. Clear, to the point, and most of all, the geometrical intuition and code demonstration make everything really easy to understand.
@AkashKumar-hu7cj2 жыл бұрын
You are amazing person, You are the motivation factor to learn complex things with ease, I am glad I found this youtube channel for my preperation for machine learning. I feel this channel should reach million subscriber base.
@festivalvibes9601 Жыл бұрын
You are amazing person, You are the motivation factor to learn complex things with ease, I am glad I found this youtube channel
@749srobin3 жыл бұрын
is explanation mein rishta hone ka potential hai bhai . Bht hi bdiya, Dhanyawaad
@himadrishekharroy425710 ай бұрын
One of the best content in KZbin till date. Thank you very much
@tusharbedse95233 жыл бұрын
Loved this video and will never open youtube for watching this concept again... you made it crystal clear!!!!!
@ThaCoders Жыл бұрын
amzing class no word to say ur work and dedication hats of u sir
@MarufKhanPGICS Жыл бұрын
you are really the best teacher the way you are teaching absolutely it is awsome
@abinashnath24812 жыл бұрын
Wonderful explanation with example. I am totally clarified with all those concepts after this video.Thank you
@ritwikgupta7540 Жыл бұрын
Amazing explanation!! One of the best videos on feature scaling so far...way to go sir!
@ArunKumar_2372 жыл бұрын
best teacher I ever seen in ML. teaching to the core
@surajghogare89312 жыл бұрын
U r the complet teacher on KZbin for DS🙏🙏😘
@usamaabid91902 жыл бұрын
Got your channel in recommendations today and really loved your content. Its amazing... Thanks alot♥️
For some reason i got better accuracy score with unscaled values than scaled values with Logistic regression. I am using this same example of Age and Salary data
@RupeshVarma-d1h2 ай бұрын
same issue with me also
@narvarstrange19202 ай бұрын
@@RupeshVarma-d1h i think the algorithm or library has been updated recently... so it results in better performance even without scaling values, so no issue here.
@talhaanik8441Ай бұрын
same issue: actual accuray 0.875 scaled accuray 0.8666666666666667
@dhavalahir5785 Жыл бұрын
You are best for machine learning
@hamdansiddiqui32942 жыл бұрын
Words are come short to explain your channel praise
@aanchalsharma256711 ай бұрын
Outstanding explaination.. Dhnaywaad sir 🌸
@prashantmaurya963511 ай бұрын
Hats off to you for this explanation.😍
@deepanshudutta44433 жыл бұрын
I am totally amazed to see your knowledge and teaching style,I really love that.Sir is it possible to learn from you personally ? Or if you have any student batch for machine learning.
Thanks you so much sir, I bet no one can teach ML topics so easily as you do ❤
@migoswami1962 жыл бұрын
Really you are great sir. Happy Teachers day in advanced
@saurabhdas22347 ай бұрын
"Thank you for explaining Standardization so clearly! I finally understand it now.
@satya3193 Жыл бұрын
please never stop teaching us, awesome content ❤💘💘💘💘💘❤❤❤❤❤
@HustlersHubMenu Жыл бұрын
🤩🤩🤩🤩🤩 You are doing an amazing work ..............for those who are willing to learn and can learn by themselves/////////////////.............Thanks a lot.......................NITISH SIR
@pritishpattnaik4674 Жыл бұрын
Wow sir , crystal clear explanation cleared all my doubts
@sid_x_18 Жыл бұрын
Geometric intuition you explain is top level ❤
@HimanshuSharma-we5li2 жыл бұрын
You are just soooo good....I wish ...mujhe ye videos pehle mil gaye hote.🙄🙄🙄
@kunikakhobragade69532 жыл бұрын
U r superrrrbbbbb yr🤩 awesome teaching..... everyone should watch ur videos....
@maitrijain7758 Жыл бұрын
Really you are a gem for students
@techvideo47524 ай бұрын
thanks for making such video.
@tanveerbashir8393 Жыл бұрын
love you sir🥰 I am enjoying your lectures and learn a lot of things properly
@@abhisheksharma10600 dada kya yea playlist pura complete hain?kyun ki playlist main 133 video to hain lekin DAY-66 tak ka mention hai thumbnail baki ka video ki video main mention nahi nahi
@abhisheksharma10600Ай бұрын
@mahasinprodhan4322 each and every video of this playlist is useful and it is related to machine learning so after 66 videos the remaining videos are also related to machine learning and are useful
@ramuvv99282 жыл бұрын
very knowledge person. excellent teaching
@SaadKhan-gf9ui11 ай бұрын
wow man....amazing explanation❣
@ahmadyaseen2617 Жыл бұрын
I've taken udemy course In machine learning but his videos are more easy to understand
@nabajyotidey56135 ай бұрын
u earned my respect^infinity @ Campus X............
@rutvikkapuriya2336 Жыл бұрын
best way of teaching thanxxx
@Scooterboy_and_others109 Жыл бұрын
Great teacher
@swethasree56843 жыл бұрын
Great Explanation Sir. Thank you
@narendraparmar1631 Жыл бұрын
Very helpful Thanks😀
@asadnawaz6931 Жыл бұрын
amazing explanation sir
@zaidnadeem49182 жыл бұрын
Best teacher
@grithijain132 Жыл бұрын
Best efforts
@SubirSantra-x3z6 күн бұрын
append method is changed to _append, So the correct method of adding new row is df=df._append(df1)
@dilipgyawali17763 жыл бұрын
well explained ...thank u very much
@zkhan20233 жыл бұрын
Awesome video sir
@adarshvlog24093 ай бұрын
completed it!!
@percyjackson1662Ай бұрын
I dont know Linear regression or Decision Tree and have just been following this series to learn ML from scratch (coming from DE background) , so my question is - do i need to go and learn all of that first or will they be covered later in this series and i just blindly follow to get atleast basics ?
@Tech_Charla7 ай бұрын
I wish I start learning ML 2 years ago, Still I can catch-up ....
@ashutoshyadav86532 жыл бұрын
its amazing ...
@mazharuddin9078 Жыл бұрын
Logistic regression require scaling / as you explained in the example
@doptopgaming956910 ай бұрын
can anyone tell should i follow this playlist in 2024
@gamingprincess54613 ай бұрын
yup,its still relevant.
@SonuK78952 жыл бұрын
Bro u are so underrateddddd
@annyd3406 Жыл бұрын
what actually np.round(X_train_scaled.describe(),1) at 19:16 did here i couldn't understand it
@acceleratedofficial1576 Жыл бұрын
After transforming it gives array as output and we are just seeing it's description
@jahadhassan34553 ай бұрын
very nice sir
@balavikaram85472 жыл бұрын
Great sir
@RAHUDAS2 жыл бұрын
Great , I learnt a lot. Just had one small doubt, you use same instastance of StandardScaler for train and test data, Now my question is that not going to lead *Data Leakage*. ? My intuition is , mean and std of train data would be shared to test data that is not correct. Because according to rule of the thumb training and test set should kept separated.
@gamingprincess54613 ай бұрын
You're right! test data is being scaled based on the characteristics of the training data. however In many cases, the training and test data come from the same distribution: If the training and test data are drawn from the same distribution, sharing the mean and standard deviation is not a significant issue and the model's performance is not significantly affected.
@sayansaha53483 жыл бұрын
awesome video loved the way you explained .Can you recommend a book to read for machine learning ?
@campusx-official3 жыл бұрын
kzbin.info/www/bejne/qXLdiZKje52qfdE
@sandipansarkar92112 жыл бұрын
finished watching
@arpitchampuriya95352 жыл бұрын
Thank you sir
@SACHINKUMAR-px8kq Жыл бұрын
Thankyou so much Sir 24 Day Not Out ...😁
@usmanriaz61577 ай бұрын
17:10 so you are saying that we use mean and std of X_train on X_test? doesn't make sense.
@deveshtyagi2996 Жыл бұрын
how do we get S.D. for xi-x bar at min 8:25
@swetaacharya2969 Жыл бұрын
sir plz could you upload the notes you are showing in video ,it will be very helpful 😇
@monikrayu25465 ай бұрын
luv you sir
@arun53513 жыл бұрын
Great video.. I believe Standardization would be beneficial in all regression based algorithms?
@campusx-official3 жыл бұрын
Not all, does not affect regression trees and other tree based algos
@simranagichani49439 ай бұрын
Please explain why only transform to be used and not fit on the test data. I tried searching it but couldn't understand. I would be grateful. The series is amazing.
@gamingprincess54613 ай бұрын
If we were to use fit on the test data, we would be learning new parameters from the test data, which would lead to data leakage. Data leakage occurs when the model is exposed to information from the test data during training, which can result in overfitting and poor generalization performance. By using fit only on the training data and transform on both training and test data, we ensure that the model is not exposed to any information from the test data during training, and we get a more accurate estimate of the model's performance.
@tusarmundhra5560 Жыл бұрын
awesome
@learnenglish6992 жыл бұрын
sir ye sab eda ke bad karnaa hai ya phale he eda kar denaa hai fr data ko clean and then ye sab ????????
@ajaykushwaha42332 жыл бұрын
Hello everyone, I have doubt: Suppose we have encoded categories data with value 0,1, do we need to standardise that features as well ?
@studyai78322 жыл бұрын
Even if you standardise , your output will be 0 and 1 only
@rohanchitale72942 жыл бұрын
Before SVM's also we have to apply Standardization right?
@arshad17813 жыл бұрын
Thanks
@sliimjiim5 ай бұрын
Hey I have a doubt. When I'm getting the accuracy score for normal X_train I'm getting 0.875 and for X_train_scaled I'm getting the score 0.86666667. Could you please tell me what's wrong here? I'm using the same dataset that you used, and already checked all the steps and code thrice! Thanks
@AlphaRane5 ай бұрын
same doubt
@AlphaRane5 ай бұрын
@campusx
@fit_tubes_3654 ай бұрын
re run karo code to aa jayega
@108_sahilgaikwad72 жыл бұрын
hey where can i learn more about x train y train xtest y test? in which video have you explained it sir?
@karanparashar68248 ай бұрын
But is it appropriate to train a ML model with a Z-scale normalized feature that has negative ages?
@gamingprincess54613 ай бұрын
Most ML algorithms, like neural networks, decision trees, and random forests, can handle negative values just fine. But, there are some exeptions: Negative ages can make it harder to understand feature importance or coefficients. For example, a negative age coefficient might be confusing. In some cases, negative ages just don't make sense. Like, in life expectancy models, negative ages are nonsensical. Make sure your model can handle domain-specific constraints.
@Kalimanzaro Жыл бұрын
Why there is no loss of information in data due to standardization ?
@sudhirjangra95244 ай бұрын
Meri Sir ki Logistic wali value Decision Tree me kyu aa rhi hai or DT ki Logistic wali me -- i have checked the code
@fit_tubes_3654 ай бұрын
same mera bhi aa raha tha, fir se run kiya code to aa gaya exactly same
@sudhirjangra95244 ай бұрын
@@fit_tubes_365 mera to vhi aa rha hai
@fit_tubes_3654 ай бұрын
@@sudhirjangra9524 Accha!🤔
@rasikakambli7249 Жыл бұрын
how can we work with 2 different dataset for train and test
@pranavkolapkar645 Жыл бұрын
Is standardization same as bringing the values in normal uniform distribution
@ehababdulrahmanshariff91965 ай бұрын
Im trying to run this now (the logisticregression) but now im getting accuracy without scaling as 0.875 and with scaling it is going down to 0.866 Is anyone else facing a similar situation or can explain this.
@sliimjiim5 ай бұрын
yes i did the coding today and i faced with the same problem, i think maybe they have updated the dataset on kaggle itself afterall its a 3 year old video
@ehababdulrahmanshariff91965 ай бұрын
@@sliimjiim I used the data set from the GitHub repo, I am assuming that some updates in sci-kit lean or some other optimisation is at work which we are not aware of.
@anujdubey74 ай бұрын
I AM GETTING SAME ACTUAL AND SCALED ACCURACY 0.875 WHY?? Did you find anything??
@mohammadfarazgoriya59292 жыл бұрын
Sir i have a doubt...sir why can't we use { lr = LogisticRegression()} for both actual and scaled data..??
@tanmaygupta8288 Жыл бұрын
Shouldn't X_test be scaled by it's own mean and standard_deviation?
@dhirajbarot433911 ай бұрын
Yes, you're correct. In a very simple way: X_train: Standardize using its own mean and standard deviation. X_test: Use the mean and standard deviation learned from X_train to standardize X_test. This ensures that the scaling is consistent and based only on information from the training set. It prevents any information from the testing set leaking into the training process.
@tanmaygupta828811 ай бұрын
@@dhirajbarot4339 thanks for the clarification
@sandeepthukral301811 ай бұрын
@@dhirajbarot4339 but after using X_test mean and std are not 0 and 1
@shovendubey2 жыл бұрын
Let me tell you one thing. You are better than UDEMY,COURSERA,,DATACAMP ...
@pawanraje55107 ай бұрын
sir why this happen with my notebook,same code same dataset but the accuracy of non-scaled is better than scaled
@Wtk_Ncs Жыл бұрын
Hii Sir, could we please get this one note file from which you are teaching ?
@easieml2 жыл бұрын
Is there any link for class notes?
@incentivee17 күн бұрын
But Mera accuracy_score score same raha hai accuracy_score Actual 0.75, Scaled 0.75
@shishankrawat21059 ай бұрын
17:10 "seekhte ho aap training pr but transform dono ko krte ho". WHY? Answer is: Splitting the data into training and testing sets before scaling ensures that your model is trained and evaluated in a realistic and unbiased manner, preventing data leakage and enabling fair evaluation of its performance. Credit - ChatGPT. Thank me later... :)