Can you calculate area of the Green shaded region? | (Circles) |

  Рет қаралды 11,010

PreMath

PreMath

Күн бұрын

Learn how to find the area of the Green shaded region. Important Geometry and Algebra skills are also explained: Trigonometry; Pythagorean theorem; circle theorem. Step-by-step tutorial by PreMath.com.
Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
Step-by-step tutorial by PreMath.com
• Can you calculate area...
Need help with solving this Math Olympiad Question? You're in the right place!
I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
/ premath
Can you calculate area of the Green shaded region? | (Circles) | #math #maths | #geometry
Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
#FindGreenArea #SemiCircle #Circle #CircleTheorem #GeometryMath #PythagoreanTheorem
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun
Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Пікірлер: 66
@imetroangola17
@imetroangola17 7 күн бұрын
Parabéns pelos vídeos e por trazer excelentes questões! ❤
@PreMath
@PreMath 7 күн бұрын
Glad to hear that! Thanks for the feedback ❤️🙏
@jaimeyomayuza6140
@jaimeyomayuza6140 4 күн бұрын
Gracias por su apoyo. DIOS. BENDIGA NUESTROS PAISES!! From BOGOTA D. C. COLOMBIA
@johankotze42
@johankotze42 7 күн бұрын
Reflect the semi circle. Six small circles fitting like that into a larger circle implies a seventh small circle on the center of the large circle, all being tangent. Therefore the diameter of the large circle is: 24 = 6*r => r = 4. No trigonometry, no Pythagoras.
@egillandersson1780
@egillandersson1780 7 күн бұрын
If you mirror all to get the big full circle, the centers of the small circles make an hexagon. So, triangle OPQ is equilateral ; therefore 2r = r - 12 => r = 4
@SkinnerRobot
@SkinnerRobot 7 күн бұрын
2r = 12 - r
@PreMath
@PreMath 7 күн бұрын
Thanks for the feedback ❤️🙏
@Noval5s
@Noval5s 7 күн бұрын
Is there a theorem that proves them equilateral?
@quigonkenny
@quigonkenny 7 күн бұрын
​​​@@Noval5s Don't know if there's a specific theorem per se, but a regular hexagon is made up of six equilateral triangles. Since each vertex in a regular hexagon is 60° from the next and the distances from the vertices to the center are all the same, then you have six 60° isosceles triangles. A 60° isosceles triangle is necessarily equilateral since the other two angles must also be 60°, so there you go.
@egillandersson1780
@egillandersson1780 7 күн бұрын
@ Yes ! Lapsus calami. Thank you for notice.
@alanthayer8797
@alanthayer8797 7 күн бұрын
VERY NIVE breakdown ! Thanks for different Solutions Daily sir !
@gaylespencer6188
@gaylespencer6188 7 күн бұрын
Another way. Draw a half circle equal to the r of the smaller circles. This half circle will be tangent to those three small circles. Now the distance from the center of the big half circle to the top of the big half circle is three r. If 3r = 12 then r is 4.
@professorrogeriocesar
@professorrogeriocesar 7 күн бұрын
Muito bom! Eu fiz sem precisar calcular o ângulo. Excelente, obrigado.
@PreMath
@PreMath 7 күн бұрын
Glad to hear that! You are very welcome! Thanks for the feedback ❤️🙏
@jacquespictet5363
@jacquespictet5363 7 күн бұрын
Making a horizontal mirror and adding the 7th small circle shows directly that R=3r.
@jimlocke9320
@jimlocke9320 7 күн бұрын
You haven't proved that the 7th circle has the same radius as the 6 other circles. Any other number of circles (e. g. 4, 5, or 6) and the middle circle will not have the same radius as the other circles.
@Claudio_Bruzzone
@Claudio_Bruzzone 7 күн бұрын
@@jimlocke9320 It is easily demonstrated. If you join the 6 centers of the small triangles, you get a regular hexagon of side 2r. Each of the 6 triangles is equilateral, therefore OP=OQ=OT=2r...
@PreMath
@PreMath 7 күн бұрын
Thanks for the feedback ❤️🙏
@jimlocke9320
@jimlocke9320 7 күн бұрын
@@Claudio_Bruzzone Yes, that is correct, thanks for the proof. jacquespictet5363 made the assumption that the 7th circle would have the same radius as the other circles, but did not prove it. With 6 circles in the large full circle, the added 7th circle in the middle will have the same radius. With more circles, you won't get a regular hexagon and the added middle circle will not have the same radius.
@marcgriselhubert3915
@marcgriselhubert3915 6 күн бұрын
Fine.
@quigonkenny
@quigonkenny 7 күн бұрын
By mirroring the figure about AB it's clear to see that the centers of the internal circles form a regular hexagon. Therefore each of the centers is 60° from the next. As the figure is symmetrical about OD, then ∠AOT = ∠POB = (180°-120°)/2 = 30°. As AB is tangent to circles T and P at G and F respectively, and TG and PF are radii (length r) of the congruent circles T and P, then ∠TGO = ∠OFP = 90° and thus ∆TGO and ∆OFP are congruent 30-60-90 special tight triangles. As OP = 2PF and PF = PC = r, then OC = R = OP+PC = 2r+r = 3r. AB = 2R 24 = 2R R = 24/2 = 12 3r = 12 r = 12/3 = 4 Green area: A = πR²/2 - 3πr² A = π(12)²/2 - 3π(4)² A = 144π/2 - 3(16)π A = 72π - 48π [ A = 24π ≈ 75.398 sq units ]
@marioalb9726
@marioalb9726 7 күн бұрын
sin30°=r/(12-r) = 1/2 2r = 12-r --> r = 4 cm A = ½πR² - 3πr²= ½π12² -3π4² A = 72π - 48π = 24π cm² (Solved √)
@jamestalbott4499
@jamestalbott4499 7 күн бұрын
Thank you!
@PreMath
@PreMath 7 күн бұрын
You are very welcome! Thanks for the feedback ❤️🙏
@sventheviking4635
@sventheviking4635 7 күн бұрын
OTQP form a rhombus of sides of equal length so OP=PQ=2r, so radius =3r
@santiagoarosam430
@santiagoarosam430 7 күн бұрын
En la figura propuesta es fácil visualizar dos hexágonos regulares concéntricos; el exterior tiene lado ED=DO =24/2=12 y el interior TQ=2r=DO-r=12-r---> r=12/3=4 ---> Área sombreada verde= (π12²/2)-(3*π4²) =24π u². Gracias y un saludo cordial.
@himo3485
@himo3485 7 күн бұрын
AO=OB=24/2=12 r/(12-r)=1/2 2r=12-r 3r=12 r=4 Green shaded area = 12*12*π*1/2 - 4*4*π*3 = 24π
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@sabinafacondo1638
@sabinafacondo1638 7 күн бұрын
Si calcola l'area del semicerchio,(conoscendo la diagonale). Si calcolano le aree dei 3 cerchi inscritti(deducendo le diagonali). Si sottraggono dall'area del semicerchio 226,08,le aree dei 3 cerchi 150,72. Risultato 75,36.
@cyruschang1904
@cyruschang1904 7 күн бұрын
R = 12 = 3r Green area = (R^2)(π/2) - (r^2)(3π) = (144/2 - 16 x 3)π = (72 - 48)π = 24π
@lwels49
@lwels49 7 күн бұрын
The line OD must be 3 times radius of small circle. So r equals 4. Etc
@AmirgabYT2185
@AmirgabYT2185 7 күн бұрын
S=24π≈75,43
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@Claudio_Bruzzone
@Claudio_Bruzzone 7 күн бұрын
No calculation is needed. Given the symmetry of the configuration, if the circumference is completed with the other 3 smaller circles, the only possible and compatible configuration is that of 7 small tangent circles (6 external and one internal with center in the center of the large circumference). Therefore trivially: r = D/6 = 24/6 = 4 The green area follows: 72π - 3*16π = 24π u² In fact, if you join all the centers of the small circles, you obtain a regular hexagon which, having a side equal to the radius of the circumscribed circle, such radius can only be 2r, and therefore r=1/3R.
@PreMath
@PreMath 7 күн бұрын
Thanks for the feedback ❤️🙏
@michaelkouzmin281
@michaelkouzmin281 7 күн бұрын
Just another solution: 1. Let us draw 2 auxiliary lines: OD and horizontal TV through point T where V is crosspoint of OD and TV; 2. Let r= TG, x = GO Then OT = 12 -r; QV = 12 -2r; TQ = 2r 3. So we have 2 right triangles: OGT: (12-r)^2 = x^2 +r^2 => x^2 = (12-r)^2 - r^2 = 144-24r (1) TVQ: x^2+(12-2r)^2 = (2r)^2 => x^2 = (2r)^2 - (12-2r)^2 = 48r - 144 (2) 4. Let us compare (1)& (2) : left sides are equal: 48r -144 = 144-24r: 72r =288 r = 4. /* x= 4sqrt(3) just for reference */ 5. A(semicirc) = pi*D^2(4*2) = 72*pi; A(white) = 3*pi*r^2 = 2*pi*3^2 = 48*pi; A(green) = 72*pi-48*pi = 24*pi sq units.
@peterkrauliz5400
@peterkrauliz5400 6 күн бұрын
That's the best approach Man!
@sergioaiex3966
@sergioaiex3966 7 күн бұрын
Solution: We must find the radius "r" to solve this question Applying Pythagorean Theorem in ∆FOP, we will have: OF² + r² = (12 - r)² OF² + r² = 144 - 24r + r² OF = √(144 - 24r) Applying, once again, Pythagorean Theorem in ∆PQW, such that W is the midpoint in the line PT [√(144 - 24r)]² + (12 - 2r)² = (2r)² 144 - 24r + 144 - 48r + 4r² = 4r² 144 - 24r + 144 - 48r = 0 288 - 72r = 0 72r = 288 r = 4 White Region Area = 3 × π (4)² WRA = 48π Green Shaded Area = ½ π (12)² - 48π GSA = 72π - 48π GSA = 24π Square Units ✅ GSA ≈ 75.3982 Square Units ✅
@giuseppemalaguti435
@giuseppemalaguti435 7 күн бұрын
OP=b,R=12...risultano due equazioni 12=2r+√((2r)^2-b^2)...12=r+√(r^2+b^2)...(12-2r)^2=4r^2-b^2,(12-r)^2=r^2+b^2...[sommo le equazioni]...288=72r=>r=4...Agreen=π(12)^2/2-3π4^2=π(72-48)=24π
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@unknownidentity2846
@unknownidentity2846 7 күн бұрын
Let's find the area: . .. ... .... ..... The white circle in the middle has exactly one point of intersection with the white circle on the left and with the white circle on the right. So with r being the radius of the white circles we can conclude: PQ = QT = 2r The semicircle has exactly one point of intersection with each of the white circles. Therefore with R being the radius of the semicircle we obtain: OP = OC − PC = R − r OQ = OD − QD = R − r OT = OE − TE = R − r The triangles OPT and PQT are isosceles triangles (OP=OT and PQ=QT). So with M being the midpoint of PT we obtain two pairs of congruent right triangles: OMP/OMT and MPQ/MQT. By applying the Pythagorean theorem to the right triangles OMP and MPQ we obtain: OP² = OM² + PM² PQ² = QM² + PM² OP² − PQ² = OM² − QM² OP² − PQ² = OM² − (OD − OM − QD)² OP² − PQ² = PF² − (OD − PF − QD)² (R − r)² − (2r)² = r² − (R − r − r)² (R − r)² − (2r)² = r² − (R − 2r)² R² − 2Rr + r² − 4r² = r² − (R² − 4Rr + 4r²) R² − 2Rr + r² − 4r² = r² − R² + 4Rr − 4r² 2R² = 6Rr R = 3r ⇒ r = R/3 = (AB/2)/3 = (24/2)/3 = 12/3 = 4 Now we are able to calculate the area of the green region: A(green) = A(semicirle) − A(white circles) = πR²/2 − 3πr² = π*12²/2 − 3π*4² = 72π − 48π = 24π Best regards from Germany
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@johankotze42
@johankotze42 7 күн бұрын
This looks like an AI generated solution. 😀
@unknownidentity2846
@unknownidentity2846 6 күн бұрын
@@johankotze42 I can assure you that my solutions are always HI generated (HI = human intelligence).🙂 Best regards from Germany
@unknownidentity2846
@unknownidentity2846 6 күн бұрын
@@johankotze42 I can assure you that my solutions are HI generated (HI = human intelligence).🙂 Best regards from Germany
@AzouzNacir
@AzouzNacir 7 күн бұрын
Let r be the radius of the circles, from which we have (12-r)²-r²=(2r)²-(12-2r)², so r=4, and the green area is equal to π*(12)²/2-3*(π*4²)=24π
@jimlocke9320
@jimlocke9320 7 күн бұрын
You beat me to it! To provide missing details: To derive that equation, construct OD and PT. Label the intersection as point G. Construct CD. Let PG have length x. Then, from ΔCDG, (2r)² = (12-2r)² + x² and, from ΔCGO, (12-r)² = r² + x². Solve for x² in each equation and equate the values of x² to produce the equation (12-r)²-r²=(2r)²-(12-2r)². Expand to (12)² - 24r + r² = 4r² - ((12)² - 48r + 4r²) and simplify to find r = 4.
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@AzouzNacir
@AzouzNacir 7 күн бұрын
Are these simple things worth writing a newspaper about? They are repetitive and not new. I think that users know this.​@@jimlocke9320
@AzouzNacir
@AzouzNacir 7 күн бұрын
Are these simple things worth writing a newspaper about? They are repetitive and not new. I think that users know this.​@@jimlocke9320
@AzouzNacir
@AzouzNacir 7 күн бұрын
Are these simple things worth writing a newspaper about? They are repetitive and not new. I think that users know this.
@SaurabhYadav-hr9nk
@SaurabhYadav-hr9nk 7 күн бұрын
please keep
@PreMath
@PreMath 7 күн бұрын
Thanks for the feedback ❤️🙏
@wackojacko3962
@wackojacko3962 7 күн бұрын
When I call customer service, I don't press one for English, I don't press two for diphthongs, and I don't press three for ululation. I press four to SOHCAHTOA! 😊
@PreMath
@PreMath 7 күн бұрын
😀 Thanks for sharing ❤️🙏
@Christopher-e7o
@Christopher-e7o 7 күн бұрын
X,2x+5=8
@MohamedMd-l5d
@MohamedMd-l5d 7 күн бұрын
Why angle equal 60 degrés please with explain
@dantallman5345
@dantallman5345 7 күн бұрын
Since the small circles are all equal, he drew tangent lines to them from the midpoint of the semicircle diameter, thus dividing the semicircle into three equal wedges (180 degrees /3=60 degrees).
@nenetstree914
@nenetstree914 7 күн бұрын
24PI
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@brettgbarnes
@brettgbarnes 6 күн бұрын
OG² = OT² - TG² OG² = (12 - r)² - r² OG² = (144 - 24r + r²) - r² ------------------------------------- OG² = 144 - 24r ------------------------------------- OG² = TQ² - (12 - QD - TG)² OG² = (r + r)² - (12 - r - r)² OG² = (2r)² - (12 - 2r)² OG² = 4r² - (144 - 48r + 4r²) ------------------------------------- OG² = 48r - 144 ------------------------------------- 48r - 144 = 144 - 24r 72r = 288 ------------------------------------- r = 4 -------------------------------------
@texitaliano64
@texitaliano64 6 күн бұрын
Il semicerchio di diametro D=24 ha raggio R=D/2=12 R=12 chiamiamo O il centro dellla semicirconferenza chiamiamo O1 il centro del primo cerchio inscritto a sinistra chiamiamo O2 il centro del secondo cerchio inscritto a destra chiamiamo O3 il centro del terzo cerchio inscritto in alto chiamo 2*a la distanza O1O2 con pitagora considero il triangolo rettangolo O1KO3 dove K è il punto medio di O1O2 a=sqrt((r+r)^2-(R-r-r)^2 a=sqrt((2*r)^2-(R-2*r)^2) a=sqrt((2*r)^2-(R^2+(2*r)^2-2*R*2*r)) a=sqrt(4*R*r-R^2) a=sqrt(4*12*r-12^2) a=sqrt(48*r-144) a=sqrt(48*(r-3)) con pitagora considero il triangolo rettangolo O1KO dove K è il punto medio di O1O2 a=sqrt((R-r)^2-r^2) a=sqrt(R^2+r^2-2*R*r-r^2) a=sqrt(12^2-24*r) a=sqrt(144-24*r) a=sqrt(24*(6-r)) uguagliando a=a otteniamo sqrt(24*(6-r))=sqrt(48*(r-3)) sqrt(144-24*r)=sqrt(48*r-144) eleviamo al quadrato entrambi 144-24*r=48*r-144 144+144-24*r-48*r=0 288-72*r=0 288=72*r r=288/72 r=4 La superficie della semicirconferenza è Ss=(pi*D^2)/4/2 Ss=72*pi La superficie di ciascuna circonferenza inscritta è So=pi*r^2 So=pi*4^2 So=16*pi Ora facciamo la differenza per trovare l'area richiesta S=Ss-3*So S=72*pi-3*16*pi S=72*pi-48*pi S=(72-48)*pi S=24*pi
@LuisdeBritoCamacho
@LuisdeBritoCamacho 7 күн бұрын
MY RESOLUTION PROPOSAL : 01) TG = r 02) TQ = 2r 03) Let's drop a Line between Point O and Point D. OD = R = 12 04) Let's draw an Isoscles Triangle [PQT) with Sides (TQ ; PQ ; TP) and with TQ = PQ 05) Let's divide Line OD in 3 different segments : OD (R) = OQ'(r) + Q'Q + QD (r). Q' is the Middle Point between Side TP. 06) R = r + Q'Q + r 07) 12 = 2r + Q'Q 08) Q'Q = (12 - 2r) 09) Let's give a call to Mr. Pythagoras !! 10) Let's draw a Rectangle [OFPQ'] 11) OF^2 = OP^2 - FP^2 ; OF^2 = (12 - r)^2 - r^2 ; OF^2 = 144 - 24r + r^2 - r^2 ; OF^2 = (144 - 24r) 12) OF'^2 = Q'P^2 13) (12 - 2r)^2 + (144 - 24r) = 4r^2 14) Only one Solution r = 4 15) Green Shaded Area = 72 * Pi - (3 * (16 * Pi)) 16) GSA =72 * Pi - 48 * Pi 17) GSA = 24 * Pi MY BEST ANSWER IS : Green Shaded Area equal 24Pi Square Units or approx. equal to 75,4 Square Units.
@PreMath
@PreMath 7 күн бұрын
Excellent! Thanks for sharing ❤️🙏
Wednesday VS Enid: Who is The Best Mommy? #shorts
0:14
Troom Oki Toki
Рет қаралды 50 МЛН
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН
Every team from the Bracket Buster! Who ya got? 😏
0:53
FailArmy Shorts
Рет қаралды 13 МЛН
Area of the incircle of a triangle (shortcut & proof)
6:38
bprp math basics
Рет қаралды 78 М.
Circle Theorems - GCSE Higher Maths
13:53
1st Class Maths
Рет қаралды 646 М.
Solve This Math Mystery: Tilted and Inscribed Semicircle Area
15:46
The Phantom of the Math
Рет қаралды 17 М.
Fun Math Problem
3:46
Andy Math
Рет қаралды 148 М.
France l can you solve this?? l Olympiad Mathematics
18:01
Math Master TV
Рет қаралды 701 М.