Glad to hear that! You are very welcome! Thanks for the feedback ❤️
@PrithwirajSen-nj6qq7 күн бұрын
Join AC diagonal. Now triangle ADC =triangle ABC >🔺 ADC - 🔺 EDC = 🔺 ABC - triangle FBC > 🔺 ACE = 🔺 ACF =S/2 As ACE=S/2=1/2* base 5, height x 🔺 EDC =S/2*2=1*2*(2*5)*height x So y =5+2*5=15 Likewise x = 7+7*2=21 Area of the rectangle =15*21=315 sq units
@PrithwirajSen-nj6qq7 күн бұрын
The big rectangle is an enlargement of 7*5 rectangle . To divide the big rectangle in three equal areas, we have to get trice of length and breadth of 7*5 rectangle It means the length and breadth of the big rectangle will be 7*3=21 and 5*3=15 Area of rectangle =21*15=315 sq units.
@marioalb97267 күн бұрын
S= xy/3 = ½x(y-5) = ½y(x-7) ⅔xy = xy -5x ⅔y = y-5 ⅓y = 5 --> y = 15 cm ⅔xy = xy -7y ⅔x = x-7 ⅓y = 7 --> x = 21 cm A = xy = 15*21 = 315cm² (Solved √)
@PreMath5 күн бұрын
Excellent! Thanks for sharing ❤️
@onyemaechiepelle43026 күн бұрын
This is your teaching I enjoyed most; thanks.
@PreMath5 күн бұрын
You are very welcome! Thanks for the feedback ❤️
@andrewrose38307 күн бұрын
The central shape can be split into two triangles with the rectangle diagonal. This diagonal splits rectangle area in half, so must split the central shape in half two. Each triangle has area S/2. Using "area = (base x height)/2", this means FB must be twice 7 (FBC has twice area of FCA) so AB is 21. Similarly, ED is twice 5, so AD is 15. This area is 21*15 or 315.
@ИванПоташов-о8ю7 күн бұрын
Draw AC. Then Area(ABC)=1,5S, Area(AFC)=0,5S. AF:FB=Area(AFC): Area (FBC)=1:2. So, FB=2AF=14 and AB=21. AD=3AE= 15 (the same proof) Area(ABCD)=15*21=315
@PreMath5 күн бұрын
Excellent! Thanks for sharing ❤️
@jamestalbott44997 күн бұрын
Thank you! I liked to the exposure to multiple equations when solving.
@PreMath5 күн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤️
@yalchingedikgedik80076 күн бұрын
That’s very nice and enjoyable Thanks Sir You are very good With glades ❤❤❤❤❤
@PreMath5 күн бұрын
Thanks for the kind words!🙏
@allanflippin24537 күн бұрын
I found a very simple approach. I don't see one similar in the comments. My apologies if I missed one. 1) Draw diagonal AC. This divides the rectangle into two equal-sized triangles. 2) The total rectangle area is 3S, so each triangle has area 1.5S 3) Consider triangles ACF and BCF. Both have the same height (BC length), but the area of ACF is half of BCF. That means AF is half the length of BF. Thus BF = 14. 4) Apply the same idea to ACE and DCE. AE is half the length of ED, so ED = 10. 5) AB = 7 + 14 = 21. AD = 5 + 10 = 15. Total area = 21 * 15 = 315.
@PreMath5 күн бұрын
Excellent! Thanks for sharing your solution.
@uwelinzbauer39735 күн бұрын
Hallo professor! I started like this: I added an auxiliary line connecting points A and C, dividing quadrilateral AECF into two triangles, making up the equation: S=(1/2)*5*x+(1/2)*7*y Remaining proceeding similar, three equations with three unknowns, leading to identical results. Thanks for sharing this interesting geometric puzzle 👍 Happy weekend to you and the friends of the channel 😀
@soli9mana-soli49537 күн бұрын
Being XY = 3S On 1) X*(Y-5) = 2S we have 5X = S On 2) Y*(X-7) = 2S we have 7Y = S tracing a perpendicular from F to DC and a perpendicular from E to BC we split the main rectangle in 4 small rectangles whose areas are: 1) left high = 5*7 = 35 2) right high = 5X - 35 = S - 35 3) left low = 7Y - 35 = S - 35 4) right low = (X-7)*(Y-5)= XY - 7Y - 5X +35 = 3S - S - S + 35 = 35 + S then multiplying crossed rectangles: 35*(S+35) = (S-35)*(S-35) S = 105 area = 3S = 3*105 = 315
With ED = a and FB = b, we have: rectangle area = 3.S = (7 +b).(5 +a); 2.triangle EDC area = 2.S = a.(7 +b); 2.triangle CBF area = 2.S = b.(5 +a). We replace (7+ b) by (3.S)/(5+ a) in the second equation and obtain (a.(3.S))/ (5+ a) = 2.S, we simplify by S and obtain (3.a)/(5+ a) = 2 giving a = 10 In the same way we replace (5+ b) by (3.S)/(7+ b) in the third equation and obtain (3.b)/(7+ b) = 2, giving b = 14 The side lengths of the rectangle are then AD = 5 + a = 15 and AB = 7 + b = 21, and the rectangle area is 15.21 = 315.
Otra forma: Trazamos la diagonal AC y la mediatriz desde el vértice C de los triángulos CFD y CED La figura queda dividida en 6 triángulos y cada uno de ellos tiene la misma área: S/2 Por tanto, los que tienen la altura "y" han de tener la misma base (7), así que x=7*3=21 Del mismo modo, los triángulos que tienen la altura "x" han de tener la misma base (5), así que y=5*3=15 Área solicitada = 21*15 = 315 u²
S(ABC) = 1,5S, S(FBC) = S. AF : BF = AE : DE = 1:2. (7 × 3) × (5 × 3) = 315.
@PrithwirajSen-nj6qq7 күн бұрын
Sir 3*🔺 CBE(S) =3[1/2*x*(y -5])=.xy (area of rectangle) > y =15 Now3 🔺 CBF =3[1/2*y*(x-7)]=xy >x =21 Area of the rectangle =21*15=315 sq units
@PreMath5 күн бұрын
Excellent! Thanks for sharing ❤️
@Birol7317 күн бұрын
My way of solution ▶ Let's divide the quadrilateral AECF into two triangles : ΔAEC + ΔACF [AF]= 7 [FB]= y [AE]= 5 [ED]= x A(AECF)= S ⇒ A(ΔAEC)= 5*(7+y)/2 A(ΔACF)= 7*(5+x)/2 ⇒ S= 5*(7+y)/2 + 7*(5+x)/2 S= (70+5y+7x)/2 b) the triangle ΔEDC: A(ΔAEC)= x*(7+y)/2 A(ΔAEC)= (7x+xy)/2 c) the triangle ΔFCB: A(ΔFCB)= y*(5+x)/2 A(ΔAEC)= (5y+xy)/2 d) A(ΔAEC) = A(ΔAEC) = S (7x+xy)/2 = (5y+xy)/2 7x+xy= 5y+ xy 5y= 7x y= 7x/5 e) A(AECF)= A(ΔAEC)= S (70+5y+7x)/2 = (7x+xy)/2 70+5y= xy y= 7x/5 ⇒ 70+ 5*(7x/5)= x*(7x/5) 70+7x= 7x²/5 both sides multiplied by 5 350+35x= 7x² ⇒ 50+5x= x² x²-5x-50=0 Δ= 25-4*1*(-50) Δ= 225 √Δ= 15 x₁= (5+15)/2 x₁= 10 x₂= (5-15)/2 x₂= -5 ❌ x₂ < 0 ⇒ x= 10 y= 7*10/5 y= 14 S= (7x+xy)/2 S= (7*10+10*14)/2 S= 105 square units Arectangle= 3S Arectangle= 3*105 Arectangle= 315 square units ✅
@PreMath5 күн бұрын
Excellent! Thanks for sharing ❤️
@phungpham17257 күн бұрын
1/ Label a and b as the width and lenght of the rectangle respectively. Focus on the area of the triangle EDC: (a-5).b/2=ab/3-> (a-5)/2=a/3-> a= 15 Similarly, (b-7).a/2= ab/3 -> b=21 Area of the rectangle=15x21= 315 sq units😅😅😅
Yo tracé una perpendicular desde F al punto G del segmento DC, dividiendo la figura en dos rectángulos. El área de FBCG = 2S Por tanto el área de AFGD = S Si igualamos tenemos que (x-7)*y=2(7*y) xy-7y=14y xy=21y x=21 Igualando las áreas de los triángulos rectángulos: (x-7)y/2=(y-5)x/2 xy-7y=xy-5x y=5x/7 y=5*21/7=15 Área solicitada = 21*15 = 315 u²
Excellent! Glad to hear that! Thanks for the feedback ❤️
@zdrastvutye3 күн бұрын
it is once again a nested calculation: 10 print "premath-can you find area of the rectangle":dim x(5),y(5) 20 l1=5:l2=7:sw=sqr(l1^2+l2^2)/57:n=l1*l2:goto 130 30 da1=l2*(l1+l3):da2=l4*(l1+l3)/2:a1=l3*(l2+l4)/2:a2=da1+da2-a1 40 a3=l4*(l1+l3)/2:dg=(a2-a1)/n:return 50 l4=sw:gosub 30 60 l41=l2:dg1=dg:l4=l4+sw:if l4>20*l1 then 110 70 l42=l4:gosub 30:if dg1*dg>0 then 60 80 l4=(l41+l42)/2:gosub 30:if dg1*dg>0 then l41=l4 else l42=l4 90 if abs(dg)>1E-10 then 80 110 return 120 gosub 50:df=(a3-a2)/n:return 130 l3=sw 140 gosub 120:if l4>20*l1 then else 160 150 l3=l3+sw:goto 140 160 l31=l3:df1=df:l3=l3+sw:l32=l3:gosub 120:if df1*df>0 then 160 170 l3=(l31+l32)/2:gosub 120:if df1*df>0 then l31=l3 else l32=l3 180 if abs(df)>1E-9 then 170 else print a1,"%",a2,"%",a3:goto 200 190 xbu=x*mass:ybu=y*mass:return 200 masx=1200/(l2+l4):masy=850/(l1+l3):if masx run in bbc basic sdl and hit ctrl tab to copy from the results window.
5*x=S 7*y=S y=5*3 (т.к. S 3шт.) x=7*3 (т.к. S 3шт.) y=15 x=21 area=15*21=315
@unknownidentity28467 күн бұрын
Let's find the area: . .. ... .... ..... Let w=AB=CD and h=AD=BC be the width and the height of the rectangle, respectively. Since the triangles BCF and CDE have the same area as the quadrilateral AECF, we can conclude: A(ABCD) = w*h = 3*S ⇒ S = w*h/3 (1) S = w*h/3 (2) S = A(BCF) = (1/2)*BC*BF = (1/2)*BC*(AB − AF) = (1/2)*h*(w − 7) (3) S = A(CDE) = (1/2)*CD*DE = (1/2)*CD*(AD − AE) = (1/2)*w*(h − 5) (4) S = A(AECF) = A(ACE) + A(ACF) = (1/2)*AE*CD + (1/2)*AF*BC = (1/2)*5*w + (1/2)*7*h = 5*w/2 + 7*h/2 The combination of equation (2) and equation (3) results in: (1/2)*h*(w − 7) = (1/2)*w*(h − 5) h*(w − 7) = w*(h − 5) h*w − 7*h = h*w − 5*w −7*h = −5*w ⇒ w = 7*h/5 The combination of this result with equation (1) and equation (4) results in: w*h/3 = S = 5*w/2 + 7*h/2 = 5*(7*h/5)/2 + 7*h/2 = 7*h/2 + 7*h/2 = 7*h ⇒ w = 21 ⇒ h = 5*w/7 = 5*21/7 = 15 Now we are able to calculate the area of the rectangle: A(ABCD) = w*h = 21*15 = 315 Best regards from Germany
@PreMath5 күн бұрын
Excellent! Thanks for sharing ❤️
@anthonyheaton57985 күн бұрын
3S
@giuseppemalaguti4357 күн бұрын
315
@PreMath5 күн бұрын
Excellent! Thanks for sharing ❤️
@LuisdeBritoCamacho7 күн бұрын
STEP-BY-STEP RESOLUTION PROPOSAL : 01) AF = 7 lin un 02) FB = X lin un 03) AB = (7 + X) lin un 04) AE = 5 lin un 05) ED = Y lin un 06) AD = (5 + Y) lin un 07) Rectangle Area = (AB * AD) sq un ; RA = (7 + X) * (5 + Y) ; RA = (35 +7Y + 5X + XY) sq un 08) Bottom Triangle [CDE] Area = 2 * S(1) = Y * (7 + X) ; 2 * S(1) = (7Y + XY) sq un 09) Middle Quadrilateral [AECF] Area = 2 * S(2) = (7 * (5 + Y)) + (5 * (7 + X)) ; 2 * S(2) = (35 + 7Y + 35 + 5X) ; 2 * S(2) = (70 + 5X + 7Y) sq un 10) Upper Triangle [BCF] Area = 2 * S(3) = X * (5 + Y) ; 2 * S(3) = (5X + XY) sq un 11) 2 * S(1) = 2 * S(2) = 2 * S(3) 12) 2 * S(1) = 2 * S(2) ; 7Y + XY = 70 + 5X + 7Y ; XY = 70 + 5X 13) 2 * S(1) = 2 * S(3) ; 7Y + XY = 5X + XY ; 7Y = 5X 14) 2 * S(2) = 2 * S(3) ; 70 + 5X +7Y = 5X + XY ; 70 + 7Y = XY 15) Solving this System of Equations I get these Positive Solutions : X = 14 and Y = 10 16) Rectangle Area = (AB * AD) sq un ; RA = (35 + 7(10) + 5(14) + (14)(10)) sq un 17) Rectangle [ABCD] Area = 35 + 70 + 70 + 140 ; Rectangle [ABCD] Area = 280 + 35 ; Rectangle [ABCD] Area = 315 sq un Therefore, OUR FINAL ANSWER : Rectangle Area must be equal 315 Square Units.