Can you find lenght of Red line? | (Fun Geometry Problem) |

  Рет қаралды 770

Math and Engineering

Math and Engineering

Күн бұрын

Пікірлер: 7
@murdock5537
@murdock5537 25 күн бұрын
Very interesting, many thanks, Sir! Here an old fashioned way finding roots (√): φ = 30° → sin⁡(3φ) = 1; ∆ PSQ → PS = 8; QS = 9; QP = 5; QPS = θ ∆ QPR → QP = 5; RP = 7; QR = r = ? QPR = α ∆ RPS → RPS = β = θ - α; PS = 8; RS = 6; RP = 7 → ∆ PSQ → law of cosines → cos⁡(θ) = 1/10 → sin⁡(θ) = 3√11/10 ∆ PSR → law of cosines → cos⁡(β) = 11/16 → sin⁡(β) = 3√15/16 → cos⁡(α) = cos⁡(θ - β) = cos⁡(θ)cos⁡(β) + sin⁡(θ)sin⁡(β) = (1/10)(11/16) + (3√11/10)(3√15/16) = (1/160)(11 + 9√165) → r^2 = 25 + 49 - 2(5)7cos⁡(α) = (9/16)(123 - 7√165) 144 < 165 < 169 → 165 = (13 - x)^2 = 169 + x^2 - 26x ≈ 169 - 26x → x = 2/13 → 13 - 2/13 = (1/13)(169 - 2) = 167/13 ≈ √165 → r^2 = (9/16)(123 - 7√165) = (9/16)(123 - 7(167/13)) = (9/4)(5/2)(43/13) → r = (3/2)√5590 → √5590 = ? → 4900 < 5590 < 6400 → (70 + x)^2 = 5590 ≈ 4900 + 140x → x = 69/14 → 70 + x = 70 + 69/14 = (1/14)(14(70) + 69) = 1049/14 → (1049/14 - x)^2 = 5590 ≈ (1049/14)^2 - 1049x/7 → x = (4761/196)(7/1049) ≈ 162/1000 = 81/500 → 1049/14 - x = 1049/14 - 81/500 = 261683/3500 ≈ 74,76657 ≈ √5590 → r= (3/4)(√430/√13) = (3/52)√5590 = (3/52)(261683/3500) ≈ 4,313456 → 3√(123 - 7√165)/4r = 1,000093882 (looks like a good approximation 🙂)
@MrPaulc222
@MrPaulc222 25 күн бұрын
I used right triangles and it became very convoluted. I had perpendiculars from the base (8) up to Q and R from corresponding points on the base. I then set up two sets of equations to find the dimensions of the two right triangles created. I then calculated the difference in heights for the short lengths down from Q and the other length I projected up from the base line as the gap between the two perpendicular points. The redline was then calculated by Pythagoras. It was very complex. I don't doubt your way was better, but I'm not yet at a level where I could understand all of it.
@soli9mana-soli4953
@soli9mana-soli4953 16 күн бұрын
I also used this method, but as you told it's very complex due to radicals. However formalizing, being QH and RK the heights of the two triangles perpendicular to base PS, applying pythagorean theorem we have: r² = (8 - PH - KS)² + (QH - RK)²
@marioalb9726
@marioalb9726 25 күн бұрын
Cosine rule: c²=a²+b²-2ab.cosα cosα = (a²+b²-c²)/(2.a.b) Angle PSQ: cosα₁ = (8²+9²-5²)/(2*8*9) α₁ = 33,5573° Angle PSR: cosα₂ = (8²+6²-7²)/(2*8*6) α₂ = 57,9100° Angle QSR: α = α₂ - α₁ = 24,3527° Triangle QSR: r² = 9²+6²-2*9*6*cosα r = 4,3138 cm ( Solved √ )
@marioalb9726
@marioalb9726 25 күн бұрын
Cosine rule: c²=a²+b²-2ab.cosα cosα = (a²+b²-c²)/(2.a.b) Angle RPS: cosα₁ = (8²+7²-6²)/(2*8*7) α₁ = 46,5675° Angle QPS: cosα₂ = (8²+5²-9²)/(2*8*5) α₂ = 84,2608° Angle QPR: α = α₂ - α₁ = 37,6933° Triangle QPR: r² = 5²+7²-2*5*7*cosα r = 4,3138 cm ( Solved √ )
@AzouzNacir
@AzouzNacir 25 күн бұрын
We use AI Cachi theorem in triangle PSR and find cosα= (8²+6²-7²)/(2*8*6)=17/32. Then we apply it in triangle PSQ and find cosβ= (8²+9²-5²)/(2*8*9)=5/6. So sinα=√11/6 and sinβ=7√15/32. Hence x²=6²+9²-2*6*9*cos(α-β)=117-108*((5/6*17/32)+(√11/6*7√15/32))= (1107-63√165)/16. Hence x= (3√(123-7√165))/4.
@santiagoarosam430
@santiagoarosam430 24 күн бұрын
Según fórmula de Heron: Área de PQS =6√11=19,8997---> Altura respecto a PS =3√11/2---> Proyección horizontal de PQ=a=½ ; Área de PRS =21√15/4---> Altura respecto a PS =21√15/16---> Proyección horizontal de SR =b≈5,5602... ---> Proyección horizontal de QR =8-a-b≈ 4,3125. ; Proyección vertical de QR =21√15/16 - 3√11/2≈0,10826---> QR =√(4,3125²+0,10826²) ≈4,3138. Gracias y saludos
Can YOU Find the Red Triangle’s Area? | Geometry Puzzle
14:06
The Phantom of the Math
Рет қаралды 9 М.
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН
The Hardest Exam Question | Only 6% of students solved it correctly
17:42
Higher Mathematics
Рет қаралды 382 М.
How To Find The Center Of A Circle Using A Square
6:12
TX Tool Crib
Рет қаралды 652 М.
2 Circles 1 Square
3:35
Andy Math
Рет қаралды 4,1 МЛН
Fun Blue Semicircle
4:00
Andy Math
Рет қаралды 443 М.
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 14 МЛН
Can any Number be a Base?
21:03
Digital Genius
Рет қаралды 480 М.
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.