Can you the Perimeter a+b+c? | (Semicircle) |

  Рет қаралды 6,434

PreMath

PreMath

Күн бұрын

Пікірлер: 22
@jamestalbott4499
@jamestalbott4499 16 сағат бұрын
Thank you!
@PreMath
@PreMath 13 сағат бұрын
You are very welcome! 😊🙏
@imetroangola17
@imetroangola17 17 сағат бұрын
*_Nota de Aula:_* c² = a²+ b² = (a+b)² - 2ab (a+b)² = c² + 2ab. Ora, c²=175 e ab= 2×[ABC] = 2×35=70. Daí, (a+b)² = 175 + 140 = 315 = 9×35. Assim, a + b = 3√35. Portanto, *a + b + c = 3√35 + 5√7*
@himo3485
@himo3485 21 сағат бұрын
7 : 28 = 1 : 4 = 1² : 2² AD=k CD=2k DB=4k AB=AD+DB=5k 5k*2k*1/2=7+28 5k²=35 k2=7 k=√7 a²=(√7)²+(2√7)²=35 a=√35 b²=(2√7)²+(4√7)²=140 b=2√35 c=AB=5√7 a + b + c = 3√35 + 5√7 (cm)
@cyruschang1904
@cyruschang1904 5 сағат бұрын
The two small triangles are similar, their linear ratio = √7 : √28 = 1 : 2 This tells us also the two small triangles and the large triangle are all 1 - 2 - √5 triangles So we can write a = x, b = 2x, c = (√5)x ab = 2x^2 = 2(7 + 28) cm^2 => x = √35 cm a + b + c = (1 + 2 + √5)(√35 cm) = (3√35 + 5√7) cm
@alexniklas8777
@alexniklas8777 13 сағат бұрын
I solved this problem with your method. Thanks sir!
@Abdelfattah-hr8tt
@Abdelfattah-hr8tt 17 сағат бұрын
Im hear following you dear
@alexundre8745
@alexundre8745 20 сағат бұрын
Bom dia Mestre Acertei Graças ao Sr estou aprendendo Geometria
@marcgriselhubert3915
@marcgriselhubert3915 21 сағат бұрын
Without thinking outside the box: Be h = CD. We have AD.h = 2.7 = 14 and BD.h = 2.28 = 56, so BD = 4.AD, and AD as AD +BD = c, we get that AD= (1/5).c and BD = (4/5).c In triangle ADC: h^2 = a^2 -(1/25).(c^2), and in triangle BDC : h^2 = b^2 - (16/25).(c^2), so b^2 - a^2 = (15/25).(c^2) = (3/5).(c^2) As a^2 + b^2 = c^2 in triangle ABC, we get then that b^2 = (4/5).(c^2) and a^2 = (1/5).(c^2), giving b = (2.sqrt(5))/5).c and a = (sqrt(5)/5).c We had h^2 = a^2 - (1/25).(c^2), so h^2 = (1/5).(c^2) - (1/25).(c^2) = (4/25).(c^2), giving that h = (2/5).c We had AD.h = 14, so ((1/5).c).((2/5).c) = 14, and so c^2) = (14.25)/2 = 7.25, giving that c = 5.sqrt(7) Now we get a = (sqrt(5)/5).c = sqrt(35) and b = ((2.sqrt(5))/5).c = 2.sqrt(35), and finally a + b + c = sqrt(35) + 2.sqrt(35) + 5.sqrt(7) = (sqrt(7)).(5 + 3.sqrt(5)).
@marcelowanderleycorreia8876
@marcelowanderleycorreia8876 11 сағат бұрын
A questão é mais difícil do que parece. Muito inteligente!! Parabéns mestre!! 👍
@quigonkenny
@quigonkenny 20 сағат бұрын
As ∆ADC = 7cm² and ∆CDB = 28cm², which is a ratio of 1:4, and the two triangles share the same height (CD), then their bases (AD and DB) must share the same ratio. Thus AD = c/5 and DB = 4c/5. As ∠BCA = 90° by Thales' Theorem, then as ∠ADC = ∠CDB = 90° and ∠CAB = ∠CAD = ∠BCD = 90°-∠B, then ∆BCA, ∆ADC, and ∆CDB are similar triangles. AD/CD = CD/DB (c/5)/CD = CD/(4c/5) CD² = (c/5)(4c/5) = 4c²/25 CD = √(4c²/25) = 2c/5 Triangle ∆CDB: A = bh/2 = DB(CD)/2 28 = (4c/5)(2c/5)/2 28 = (8c²/25)/2 = 4c²/25 c² = 28(25/4) = 7(25) = 175 c = √175 = 5√7 CA/DC = BC/DB a/2√7 = b/4√7 2√7b = 4√7a b = 4√7a/2√7 = 2a a² + b² = c² a² + (2a)² = (5√7)² a² + 4a² = 175 5a² = 175 a² = 175/5 = 35 a = √35 b = 2a = 2√35 a + b + c = √35 + 2√35 + 5√7 [ a + b + c = 3√35 + 5√7 ≈ 30.977cm ]
@davidseed2939
@davidseed2939 10 сағат бұрын
my method since the left and right triangles have an area ratio of 4 and because those triangles are similar. (a property of rt angled triangles divided by the perpendicular) then corresponding lengths in the triangles will have a ratio of √4 =2 hence b=2a. now the area of the whole triangle is 35 and this is calculated as ab/2 35=a(2a)/2 a^2=35, b^2=140 and by Pythagoras c^2 =a²+b²=175 it follows that a=√35, b=2√35 c=5√7 so a+b+c=3√35+5√7 Incidentally, this diagram can be used to prove pythagoras. First using angle sums, the two constituent triangles and the whole triangle are all similar. For any similar triangles, the area of each triangle is in proportion to the square of corresponding lengths in the triangle. The chosen corresponding lengths are the hypotenuses of each triangle (a,b,c) ie area of ΔACD =ka² ΔDCB=kb² ΔABC=kc² now the two component triangles have a total area equal to the area of the large triangle. ie. ka²+kb²=kc² hence a² +b ² =c² QED 😊
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 6 сағат бұрын
ABC & ACD are similar triangles. Hence a^2/c^2 =7/35=1/5 > a/c =1/√5--(1) ABC & BCD are similar triangles. Hence b^/c^2=28/35=4/5 > b/c =2/√5 --(2) From (1) & (2) we get a ঃ b ঃ c = 1ঃ 2ঃ√5=kঃ2k ঃ √5 k The area of the 🔺 ABC = 1/2*ab =35 1/2*k*2k =35 >k =√35 Hence a =√35 b =2√35 c =5√7 Hence Perimeter =(√35+2√35+5√7) units =(3√35 +5√7) units
@wasimahmad-t6c
@wasimahmad-t6c 18 сағат бұрын
A=5.353 b=13.076696 c=14
@AnonimityAssured
@AnonimityAssured 19 сағат бұрын
The title needs correcting.
@sergioaiex3966
@sergioaiex3966 19 сағат бұрын
Solution: Triangles with the same height will have areas whose ratios is the same as the ratio of their bases In other words: ∆ ADC Area/∆ BDC Area 7/28 = 1/4 Therefore If AD = k, BD = 4k Applying Chords Theorem h² = k . 4k h² = 4k² h = 2k ∆ ADC A = ½ base × heigth 7 = ½ k × 2k 14 = 2k² k = √7 ===== Applying Pythagorean Theorem in ∆ ADC (k)² + (2k)² = a² k² + 4k² = a² a² = 5k² a = k √5 a = √7 . √5 a = √35 ====== c = k + 4k c = 5k c = 5√7 ====== Applying Thales's Theorem in ∆ ABC and, at the same time, Pythagorean Theorem, to calculate "b" a² + b² = c² (√35)² + b² = (5√7)² 35 + b² = 175 b² = 140 b = 2√35 ======= Final Step a + b + c = √35 + 2√35 + 5√7 a + b + c = 3√35 + 5√7 cm ✅ a + b + c = 30.9769 cm ✅
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 14 сағат бұрын
BDC /ADC = (1/2*BD*CD)/(1/2*AD*CD)= 28/7 >BD /AD = 4/1=4x/x In respect of the semicircle CD is the geometric mean of AD and BD Then CD ^2=AD*BD=x*4x > CD =2x rt 🔺 ADC =1/2 *AD *CD =1/2*x*2x=x^2 Now x ^2 =7 x =√7 AD =√7 BD =4x =4√7 c =AD +BD =5√7--(1) In rt 🔺 ADC a =√(AD^2 + CD ^2) = √(7+4*7)=√35 --(2) In rt 🔺 BDC b =√(BD^2+CD^2) =√(16*7+4*7) =2√35 ---(3) From (1),(2) & (3) a +b+c =√35 +2√35+ 5√7 =(3√35 +5√8) units
@unknownidentity2846
@unknownidentity2846 21 сағат бұрын
Let's face this Christmas challenge: . .. ... .... ..... The triangle ABC can be divided into the right triangles ACD and BCD. So we can conclude: A(ABC) = A(ACD) + A(BCD) = (1/2)*AD*CD + (1/2)*BD*CD = (1/2)*(AD + BD)*CD A(ACD) = (1/2)*AD*CD ∧ A(BCD) = (1/2)*BD*CD ⇒ BD/AD = A(BCD)/A(ACD) = (28cm²/7cm²) = 4 ⇒ BD = 4*AD According to the theorem of Thales the triangle ABC is a right triangle. So we can apply the right triangle altitude theorem: CD² = AD*BD CD² = AD*(4*AD) CD² = 4*AD² ⇒ CD = 2*AD A(ACD) + A(BCD) = (1/2)*(AD + BD)*CD 7cm² + 28cm² = (1/2)*(AD + 4*AD)*(2*AD) 35cm² = 5*AD² 7cm² = AD² ⇒ AD = √(7cm²) = (√7)cm CD = 2*AD = (2√7)cm BD = 4*AD = (4√7)cm Now we apply the Pythagorean theorem to the right triangles ACD and BCD: AC² = AD² + CD² = (√7)²cm² + (2√7)²cm² = 7cm² + 28cm² = 35cm² ⇒ AC = √( 35cm)² = (√35)cm BC² = BD² + CD² = (4√7)²cm² + (2√7)²cm² = 112cm² + 28cm² = 140cm² ⇒ BC = √(140cm)² = (2√35)cm Now we are able to calculate the perimeter of the triangle ABC: P(ABC) = AB + AC + BC = (AD + BD) + AC + BC = (√7)cm + (4√7)cm + (√35)cm + (2√35)cm = (5√7)cm + (3√35)cm ≈ 30.98cm And now (as a Christmas gift) let's check the side lengths by applying Heron's formula: s = (AB + AC + BC)/2 = [(5√7 + 3√35)/2]cm s − AB = [(5√7 + 3√35)/2 − 5√7]cm = [(3√35 − 5√7)/2]cm s − AC = [(5√7 + 3√35)/2 − √35]cm = [(5√7 + √35)/2]cm s − BC = [(5√7 + 3√35)/2 − 2√35]cm = [(5√7 − √35)/2]cm s * (s − AB) * (s − AC) * (s − BC) = [(5√7 + 3√35)/2]*[(3√35 − 5√7)/2]*[(5√7 + √35)/2]*[(5√7 − √35)/2]cm⁴ = [(9*35 − 25*7)*(25*7 − 35)/16]cm⁴ = [(315 − 175)*(175 − 35)/16]cm⁴ = [140*140/16]cm⁴ = 35²cm⁴ ⇒ A(ABC) = √[s * (s − AB) * (s − AC) * (s − BC)] = 35cm² ✅ Best regards from Germany
@HERRANDIAZ
@HERRANDIAZ Сағат бұрын
jajajajajaj x2
@Thampuran-o9o
@Thampuran-o9o 17 сағат бұрын
👍👍👍
Spain Math Olympiad | A Very Nice Geometry Problem
12:18
Math Booster
Рет қаралды 5 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Fun Blue Semicircle
4:00
Andy Math
Рет қаралды 343 М.
What's a Tensor?
12:21
Dan Fleisch
Рет қаралды 3,7 МЛН
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 309 М.
Oxford Admission Test - Find the value of x
10:39
Math Queen
Рет қаралды 438 М.
2 Squares 1 Semicircle
5:42
Andy Math
Рет қаралды 84 М.
Why is there no equation for the perimeter of an ellipse‽
21:05
Stand-up Maths
Рет қаралды 2,2 МЛН
ANGLE THEOREMS - Top 10 Must Know
20:47
JensenMath
Рет қаралды 360 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН