Can you find Perimeter and Area of the triangle? | (Trigonometry) |

  Рет қаралды 6,599

PreMath

PreMath

Күн бұрын

Learn how to find the Perimeter and Area of the triangle. Important Geometry and Algebra skills are also explained: Law of Cosines; area of a triangle formula; perimeter. Step-by-step tutorial by PreMath.com
Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
Step-by-step tutorial by PreMath.com
• Can you find Perimeter...
Need help with solving this Math Olympiad Question? You're in the right place!
I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
/ premath
Can you find Perimeter and Area of the triangle? | (Trigonometry) | #math #maths | #geometry
Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
#FindPerimeter #FindArea #TriangleArea #LawOfCosines #GeometryMath #PythagoreanTheorem
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun
Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Пікірлер: 36
@anatoliy3323
@anatoliy3323 2 күн бұрын
💯👍🎄 Merry Christmas 🎁 Be happy and all the best to you, Professor!
@PreMath
@PreMath 2 күн бұрын
Merry Christmas! Wishing you a happy holiday season as well! 😊🙏
@RK-tf8pq
@RK-tf8pq 18 сағат бұрын
Just substitute 3X - 5 as “a”, then the 3 sides would be “a”, “a+1” and “a+2”. Then the calculations are simpler. At the end we don’t even need to change “a” back to X.
@soli9mana-soli4953
@soli9mana-soli4953 Күн бұрын
I solved without trigonometry tracing the height AH and seeing that AHB is a right triangle of 30,60,90 degree whose hypotenuse is 3x-5. It leads to the same quadratic equation without the cosine law
@jamestalbott4499
@jamestalbott4499 Күн бұрын
Thank you!
@kalavenkataraman4445
@kalavenkataraman4445 2 күн бұрын
Perimeter = 7.5 , area =1.623 Sq.units(15× root3÷16)
@Ibrahimfamilyvlog2097l
@Ibrahimfamilyvlog2097l Күн бұрын
Wow Sirr ❤❤ Very Interesting Video❤❤❤ Thanks for sharing ❤❤
@sorourhashemi3249
@sorourhashemi3249 Күн бұрын
Thanks chalenging. Draw a right line from A and mark it as F. We have a right triangle AFB in which B angle is 60 and A angle is 30. The side is FB is half of the cord AB. = 3x-5/2 focus on right triangle AFC and by phytagorus theorum AF^2+{( 3x-5/2/2)+(3x-4)}^2=(3x-3) ^2)===> X=2.16
@AmirgabYT2185
@AmirgabYT2185 2 күн бұрын
P=7,5 S=15√3/16≈1,624
@marcgriselhubert3915
@marcgriselhubert3915 2 күн бұрын
*Let's name t = 3.x -4, The side lenthes of the triangle are now BA = t - 1 , BC = t and AC = t + 1. The law of cosines in the triangle ABC gives: (t + 1)^2 = t^2 + (t - 1)^2 -2.t.(t - 1).cos(120°), or: t^2 +2.t + 1 = t^2 + t^2 -2.t + 1 +t^2 - t (as cos(120°) = -1/2). That gives: 2.t^2 - 5.t = 0 and then t = 5/2 (t cannot be equal to 0 as the lengthes are positive). So t = 3.x -4 = 5/2 (and x = 13/6). *The perimeter of the triangle is 3.t = 15/2. *The area of the triangle (1/2).BA.BC.sin(120°) = (1/2).t.(t -1).(sqrt(3)/2) = (1/2).(5/2).(3/2).(sqrt(3)/2) = (15/16).sqrt(3).
@jimlocke9320
@jimlocke9320 Күн бұрын
Nice observation that simplifies the algebra!
@imetroangola17
@imetroangola17 2 күн бұрын
*Solução:* Seja y = 3x - 5. Daí, BC= y + 1 e AC = y + 2. Você pode usar a lei dos cossenos, porém , vamos construir uma perpendicular AD em relação ao lado BC. Assim, O ângulo ABD = 60° e, usando a definição de seno e cosseno no triângulo retângulo ∆ABD, temos: BD = y/2 e AD=(y√3)/2. Assim, DC = y/2 + y+1 = (3y+2)/2. Por Pitágoras no ∆ACD: (y+2)² = [(y√3)/2]² + [(3y+2)/2]² y²+4y+4 = 3y²/4+(9y²+12y+4)/4 y²+4y+4 = (12y²+12y+4)/4 y²+4y+4 = 3y²+3y+1 2y² - y -3 = 0, com y > 0. Resolvendo essas equação do 2° grau, obtemos y = 3/2, logo: AB=3/2, BC=5/2, AC=7/2 e AD=3√3/4. Temos: *_Perímetro=_* 3/2 + 5/2 + 7/2 = *15/2 U* *_Área=_* AD×BC/2 = = 5/2 × 3√3/8 = *15√3/16 U.Q*
@cyruschang1904
@cyruschang1904 Күн бұрын
Perimeter = (3x - 3) + (3x - 4) + (3x - 5) = 9x - 12 Area = (height)(base)/2 = (Sin60°)(3x - 5)(3x - 4)/2 = (√3)(3x - 5)(3x - 4)/4 [(Sin60°)(3x - 5)]^2 + [(Cos60°)(3x - 5)]^2 = (3x - 5)^2 To find x (3x - 3)^2 = (3x - 4)^2 + (3x - 5)^2 - 2(3x - 4)(3x - 5)(Cos120°) 18x^2 - 63x + 52 = 0 x = [63 +/- √(63)(63) - 4(18)(52)] / 36 = [21 +/-√(21)(21) - 4(2)(52)] / 12 = 13/6 or 4/3 (the base 3x - 4 cannot be zero) Perimeter = 9(13/6) - 12 = 39/2 - 12 = 7.5 Area = (√3)(13/2 - 5)(13/2 - 4)/4 = (√3)(3/2)(5/2)/4 = (15√3)/16
@giuseppemalaguti435
@giuseppemalaguti435 Күн бұрын
Col teorema del coseno risulta 18x^2-63x+52=0..x=39/18,x=4/3(no)..per cui i lati sono 7/2,3/2,5/2...A=(1/2)(3/2)(5/2)sin120=15√3/16..P=15/2
@sergioaiex3966
@sergioaiex3966 2 күн бұрын
Solution: First, we've to calculate x, by using the Law of Cosines: (3x - 3)² = (3x - 4)² + (3x - 5)² - 2 (3x - 4) (3x - 5) cos 120° 9x² - 18x + 9 = 9x² - 24x + 16 + 9x² - 30x + 25 + 9x² - 15x - 12x + 20 9x² - 18x + 9 = 27x² - 81x + 61 18x² - 63x + 52 = 0 x = (63 ± √225)/36 x = (63 ± 15)/36 x' = 78/36 = 39/18 = 13/6 (Accepted) x" = 48/36 = 12/9 = 4/3 (Rejected) Therefore x = 13/6 Now we have to calculate the sides length 3x - 5 = 3 (13/6) - 5 = 39/6 - 5 = (39 - 30)/6 = 9/6 = 3/2 3x - 4 = 3 (13/6) - 4 = 39/6 - 4 = (39 - 24)/6 = 15/6 = 5/2 3x - 3 = 3 (13/6) - 3 = 39/6 - 3 = (39 - 18)/6 = 21/6 = 7/2 Area = ½ × 3/2 × 5/2 × sin 120° Area = ½ × 3/2 × 5/2 × √3/2 Area = (15√3)/16 Square Units ✅ Area ≈ 1.6237 Square Units ✅ Perimeter = 3/2 + 5/2 + 7/2 Perimeter = 15/2 Units ✅ Perimeter = 7.5 Units ✅
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq Күн бұрын
This has so many solutions. May see and comment on the two solutions offered by me
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 2 күн бұрын
Sir 1) we may write the side 3x -4 =a Then 3x - 5=a -1 3x -3= a +1 2)Perimeter =3a 3)1/2*a*(a-1)sin120 4) Cos 120 =[(a-1)^2+a^2 -(a+1)^2]/[2a(a-1)] =(a^2-2a +1+a^2 -a^2-2a-1)/2a(a-1) =(a^2-4a)/2a(a-1) =(a -4)/(2a-2) > - 1/2 =(a-4)/(2a -2) > a=5/2 units 5)Perimeter =3a=3*5/2=15/2 units 6)Hence the legs of ang 120 degrees are a=5/2 and a-1=5/2 -1=3/2 Area =1/2*5/2* 3/2*sin 120 =1/2*5/2*3/2*√3/2 =1*5*3*√3/2*2*2*2 =15√3/16 sq units [ *** please note that this solution does not have any - ve value of length and no question of rejecting the - -ve arose. ]
@georgebliss964
@georgebliss964 Күн бұрын
Yes, substituting a, (a-1) & (a+1) for the side lengths simplifies the Cosine Rule calculations and eliminates the need to solve for x.
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq Күн бұрын
@georgebliss964 There is another solution in comments. Here I said the problem may have a lot of solutions. Please see it and comment
@alexundre8745
@alexundre8745 2 күн бұрын
Bom dia Mestre Irei usar a Lei dos cossenos e produtos notáveis p resolver essa questão Grato
@murdock5537
@murdock5537 Күн бұрын
Very nice, many thanks, Sir! Merry Christmas! φ = 30° → cos⁡(4φ) = -cos⁡(6φ - 4φ) = -cos⁡(2φ) = -sin⁡(φ) = -1/2 sin⁡(4φ) = sin⁡(6φ - 4φ) = sin⁡(2φ) = cos⁡(φ) = √3/2 ∆ ABC → ABC = 4φ; AB = 3x - 5; BC = 3x - 4; AC = 3x - 3; area & perimeter ∆ ABC = ? 3x - 3 ∶= a → 3x - 4 = a - 1 → 3x - 5 = a - 2 → a^2 = (a - 1)^2 + (a - 2)^2 - 2(a - 1)(a - 2)cos⁡(4φ) = (a - 1)^2 + (a - 2)^2 + (a - 1)(a - 2) → a^2 - 9a + 7 = 0 → a1,a2 = (1/4)(9 ± 5) → a1 = 1 → a - 2 < 0 ≠ solution → a2 = 7/2 = 3x - 3 → x = 13/6 → 3x - 3 = 7/2 → 3x - 4 = 5/2 → 3x - 5 = 3/2 → perimeter ∆ ABC = 15/2 → area ∆ ABC = (1/2)sin⁡(4φ)(a - 1)(a - 2) = 15√3/16
@alexniklas8777
@alexniklas8777 Күн бұрын
I solved the problem using your method: x= 13/6; Р=7,5; S= a×b×sin(60°)/2= =(3/2×5/2×√3/2)/2=15√3/16 Thanks sir!❤
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq Күн бұрын
Here there is another sol Drop a perpendicular AD on extended CB In 🔺 ADB is a special 🔺 of 30-60-90 So if BD =1 , AB =2 Hence AB =3x -5 = 2 > x =7/3 BC =3x -4 =3 AC = 3x -3 =4 Hence the sides of triangle ABC are 2,3,4 Perimeter = 2+3+5=9 units Area =1/2*2*3*sin120 =3sin 120 =3*√3/2=3√3/2sq units This have so many solutions as we take different values of BD
@Abdelfattah-hr8tt
@Abdelfattah-hr8tt 2 күн бұрын
I'm so glad to be one of your fallwers
@PreMath
@PreMath Күн бұрын
Thanks dear ❤️🙏 You are the best! ❤️ Thanks for the feedback ❤️
@phungpham1725
@phungpham1725 2 күн бұрын
1/ Label AB= (3x-5)= a -> AC= (3x-5) +2=(a+2) and BC=(a+1) 2/ Drop the height AH to BC-> AH = a sqrt3/2 and BH= a/2 ( the triangle AHB is a 30/90/60 one) --> HC = a/2 + a+1= (3a+2)/2 By using the Pythagorean theorem sq (asqt3/2) + sq((3a+2)/2))= sq( a+2) --> 2sqa-a-3 = 0 -> a= 3/2 ( negative result rejected) --> 3x -5 = 3/2 x= 13/6 Perimeter= 7.5 units Area= 15sqr3/ 16😅😅😅
@unknownidentity2846
@unknownidentity2846 2 күн бұрын
Let's face this challenge: . .. ... .... ..... We should be able to find the value of x by applying the law of cosines. With y=3x−5 we obtain: AC² = AB² + BC² − 2*AB*BC*cos(∠ABC) (3x − 3)² = (3x − 5)² + (3x − 4)² − 2*(3x − 5)*(3x − 4)*cos(120°) (y + 2)² = y² + (y + 1)² − 2*y*(y + 1)*(−1/2) (y + 2)² = y² + (y + 1)² + y*(y + 1) y² + 4y + 4 = y² + y² + 2y + 1 + y² + y 0 = 2y² − y − 3 0 = 2y² + 2y − 3y − 3 0 = 2y(y + 1) − 3(y + 1) 0 = (2y − 3)(y + 1) First solution: y + 1 = 0 ⇒ y = −1 ⇒ x = (y + 5)/3 = (−1 + 5)/3 = 4/3 ⇒ AC = 3x − 3 = 3*(4/3) − 3 = 4 − 3 = 1 ⇒ AB = 3x − 5 = 3*(4/3) − 5 = 4 − 5 = −1 ⇒ BC = 3x − 4 = 3*(4/3) − 4 = 4 − 4 = 0 This is not a valid solution. Second solution: 2y − 3 = 0 ⇒ y = 3/2 ⇒ x = (y + 5)/3 = (3/2 + 5)/3 = (3/2 + 10/2)/3 = (13/2)/3 = 13/6 ⇒ AC = 3x − 3 = 3*(13/6) − 3 = 13/2 − 3 = 13/2 − 6/2 = 7/2 ⇒ AB = 3x − 5 = 3*(13/6) − 5 = 13/2 − 5 = 13/2 − 10/2 = 3/2 ⇒ BC = 3x − 4 = 3*(13/6) − 4 = 13/2 − 4 = 13/2 − 8/2 = 5/2 Now we are able to calculate the area and the perimeter of the triangle: A(ABC) = (1/2)*AB*BC*sin(∠ABC) = (1/2)*(3/2)*(5/2)*sin(120°) = (15/8)*(√2/2) = (15/16)√2 P(ABC) = AB + BC + AC = 3/2 + 5/2 + 7/2 = 15/2 Best regards from Germany
@wasimahmad-t6c
@wasimahmad-t6c Күн бұрын
7.5×2.95÷2=11.0625
@blogfilmes1134
@blogfilmes1134 2 күн бұрын
Acertei !!!!!
@PreMath
@PreMath Күн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤️
@unknownidentity2846
@unknownidentity2846 5 сағат бұрын
Let's do it again with another method: . .. ... .... ..... First of all we add point D such that ACD is a right triangle and B is located on CD. Then we have ∠ADB=90° and ∠ABD=180°−120°=60°. Therefore ABD is a 30°-60°-90° triangle and we can conclude: BD = AB/2 = (3x − 5)/2 AD = √3*BD = (√3/2)(3x − 5) Now we can apply the Pythagorean theorem to the right triangle ACD: AC = 3x − 3 = y + 2 AD = (√3/2)(3x − 5) = (√3/2)y CD = BC + BD = (3x − 4) + [(3x − 5)/2] = (y + 1) + y/2 = 3y/2 + 1 AC² = AD² + CD² (y + 2)² = [(√3/2)y]² + (3y/2 + 1)² y² + 4y + 4 = 3y²/4 + 9y²/4 + 3y + 1 0 = 2y² − y − 3 ... (see my first comment) 🙂
@uwelinzbauer3973
@uwelinzbauer3973 Күн бұрын
Thanks professor for sharing this interesting video! Merry Christmas to all who celebrate it. I hope to do not wrong to wish a happy winter solstice to everyone 😊 To my opinion this is not political, not dependent on what kind of belief one has, including atheists, even of no significance if earth is flat or a globe. It can be an occasion to send best wishes to anyone, like peace, health and happiness. For those who live in the north its the expectation of light and warmth will come back.
@PreMath
@PreMath Күн бұрын
So kind of you dear🙏❤️ Merry Christmas! Wishing you a happy holiday season as well! 😊🙏 Stay blessed 😀
@reynaldowify
@reynaldowify 2 күн бұрын
Yhank you. I thought that x had to be intyeger.
@wackojacko3962
@wackojacko3962 2 күн бұрын
First and foremost as a US citizen I follow the Constitution of the United States of America. If anyone is offended by that, I don't care! Be offended...🤣. @ 7:43 , never say never! Things get very strange very fast in this 4-dimensional space-time continuum.😊
@PreMath
@PreMath Күн бұрын
😀 Thanks for sharing ❤️
Japanese Math Olympiad | A Very Nice Geometry Problem
12:34
Math Booster
Рет қаралды 5 М.
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
They asked this classic math question on The 1% Club! 0+1+2+...+100=?
4:55
Solve this to get the #Job. You have 3 seconds
5:48
MindYourDecisions
Рет қаралды 61 М.
Spain Math Olympiad | A Very Nice Geometry Problem
12:18
Math Booster
Рет қаралды 6 М.
Harvard University Admission Entrance Exam | A tricky question
16:01
Higher Mathematics
Рет қаралды 17 М.