Cancellation Laws hold in a group proof (Abstract Algebra)

  Рет қаралды 22,837

BriTheMathGuy

BriTheMathGuy

Күн бұрын

Пікірлер: 23
@mikeCavalle
@mikeCavalle 6 жыл бұрын
btw - i argue that proofwiki.org/wiki/Cancellation_Laws is also incorrect reasoning. i still say that given ab=ac ==> a'ab = a'ac is using Cancellation since we get that a'ab =a'ac ==> ab = ac. Until you prove cancellation you can't use "multiple on the left on both sides of =" as an operation. If the symbol "equal(=)" is describing the notion of identity and is taken to be "is" then getting a'ab is a'ac from ab is ac is using the Cancellation Law cause identity is symmetric .
@thapelo_inori
@thapelo_inori 6 жыл бұрын
you made that look easy. Because it is. Thanks ; )
@BriTheMathGuy
@BriTheMathGuy 6 жыл бұрын
You're welcome! Have a nice day!
@muhammadrasull9388
@muhammadrasull9388 4 жыл бұрын
@@BriTheMathGuy Thanks for you
@AlexandreGurchumelia
@AlexandreGurchumelia 4 жыл бұрын
0:53 you should reference associativity here
@mikeCavalle
@mikeCavalle 6 жыл бұрын
your are using the cancellation law to prove the cancellation law. ab = ac ==> a"ab = a''ac (ie. multiplying on both sides) assumes that you already have a cancellation law. right? when proving a cancellation law all you have is the Group definition,right? .
@mikeCavalle
@mikeCavalle 6 жыл бұрын
btw : Denote the unit of the group by e then: ab=ac implies: b=eb=(a−1a)b=a−1(ab)=a−1(ac)=(a−1a)c=ec=c ba=ca implies: b=be=b(aa−1)=(ba)a−1=(ca)a−1=c(aa−1)=ce=c Note that unit, inverse and associativity (characteristics of group) all play a part.
@BriTheMathGuy
@BriTheMathGuy 6 жыл бұрын
Im using associativity, though I didn’t explicitly say so. You may verify this proof by other sources. Here is one for you to check out: proofwiki.org/wiki/Cancellation_Laws Have a wonderful day!
@VinayKumar-nf6sd
@VinayKumar-nf6sd 5 жыл бұрын
@@mikeCavalle He is assumed to have proven that the identity element in a group is unique
@mikeCavalle
@mikeCavalle 6 жыл бұрын
where in the the definition of a Group does it say you can multiply both sides of an equation by the same thing and maintain equality?
@hrcricket3240
@hrcricket3240 4 жыл бұрын
Is the converse true ? Please ans and justify your answer
@AkashPatel-Sky
@AkashPatel-Sky 5 жыл бұрын
Thank u
@BriTheMathGuy
@BriTheMathGuy 5 жыл бұрын
You’re welcome, have a nice day!
@AkashPatel-Sky
@AkashPatel-Sky 5 жыл бұрын
@@BriTheMathGuy glad to have a reply from u sir...love from India
@ibrahimfarhanparinduri1276
@ibrahimfarhanparinduri1276 5 жыл бұрын
Can we cancel the a if the equation is ab=ya?
@saifmiziry6457
@saifmiziry6457 5 жыл бұрын
thanks sir , but now i want to sol my quastion : q/ (In agroup theory , the cancellation is hold) . is this quastion looks like your quastion or not ?
@cardiacbalakumaranm5420
@cardiacbalakumaranm5420 5 жыл бұрын
Thanks sir
@AngelaEstherRS
@AngelaEstherRS 6 жыл бұрын
What happens if you use numbers?
@BriTheMathGuy
@BriTheMathGuy 6 жыл бұрын
You will get the same result, though it would not be a complete proof.
@cloudwithjd4068
@cloudwithjd4068 6 жыл бұрын
Good explanation sir Tq
@BriTheMathGuy
@BriTheMathGuy 6 жыл бұрын
You're welcome!
@mahdihasan3145
@mahdihasan3145 6 жыл бұрын
thnx sir
@BriTheMathGuy
@BriTheMathGuy 6 жыл бұрын
You're welcome!
Uniqueness of Inverses in a Group Proof (Abstract Algebra)
2:36
BriTheMathGuy
Рет қаралды 9 М.
Group Definition (expanded) - Abstract Algebra
11:15
Socratica
Рет қаралды 905 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН
Ful Video ☝🏻☝🏻☝🏻
1:01
Arkeolog
Рет қаралды 14 МЛН
[a^k] = [a^gcd(n,k)] and |a^k| = n/gcd(n,k) Proof (Abstract Algebra)
12:24
So Why Do We Treat It That Way?
5:53
BriTheMathGuy
Рет қаралды 162 М.
Proof of the Cancellation Laws in a Group
6:47
The Math Sorcerer
Рет қаралды 10 М.
Ring Definition (expanded) - Abstract Algebra
6:51
Socratica
Рет қаралды 298 М.
Uniqueness of Identity in a Group Proof (Abstract Algebra)
3:20
BriTheMathGuy
Рет қаралды 13 М.
Cyclic Groups  (Abstract Algebra)
5:01
Socratica
Рет қаралды 465 М.
All About Subgroups | Abstract Algebra
15:51
Wrath of Math
Рет қаралды 36 М.
My Most Controversial Integral
3:10
BriTheMathGuy
Рет қаралды 59 М.
Theorems That Disappointed Mathematicians
6:09
BriTheMathGuy
Рет қаралды 82 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН