Wow, this is by far the only tutorial demonstrating a clear description of the CCA, and how to compute it. Thanks!
@tsunghanhsieh90852 жыл бұрын
Oh My! This is the best explanation about CCA I have ever seen.
@Tom-sp3gy4 ай бұрын
Beautiful explanation … 3 min into the video and I understood the whole gist of CCA! Thankyou so much !!! Whoever said that complicated things cannot be explained simply?
@joshuagervin2845 Жыл бұрын
Thanks!
@EashwarMurali Жыл бұрын
Is there further theory behind the equation introduced at 6:25? Can you suggest some reading material for concrete proofs?
@tilestats Жыл бұрын
Check wiki en.wikipedia.org/wiki/Canonical_correlation
@golshanshakeebaee8682 жыл бұрын
Thank you very much for your clear explanation. Just wanted to say your voice is very similar to Professor Schmidt. Keep up the good work. best regards :)
@tilestats2 жыл бұрын
Thank you!
@KS-df1cp2 жыл бұрын
What would have happened if we did not take inverse at 6:46 timestamp? What if we multiply all of them as it is? Thank you.
@khushpatelmd2 жыл бұрын
You are the best stats professor!! Thanks so much
@tilestats2 жыл бұрын
Thank you!
@ernestamoore43852 жыл бұрын
@@tilestats Excellent video. One question though: How to choose whether to use CCA or PLS? The difference is that PLS maximises the covariance between the datasets whereas CCA maximises the correlation.
@milrione8425 Жыл бұрын
So well explained!! Thank you!!
@yaweli29688 ай бұрын
Can you share a link to a nice multivariate linear regression dataset with at least 4 dependent variable and at least 2 outcome variables if possible?
@mgpetrus6 ай бұрын
Thanks for your very didatical demostration. I was wondering why you didn't mentioned about the data transformation and the data standarlization previous start the analysis, mainly because the blood preasure and body size have distinct scales.
@tilestats6 ай бұрын
Yes, you can standardize the data but you will get the same correlations with un-standardized data because you later on instead standardize the scores as I explain at 10:56.
@Davide-yg5ny2 жыл бұрын
you're a life-saver
@aakashyadav15892 жыл бұрын
Your stats videos are great.
@tilestats2 жыл бұрын
Thank you!
@杨佳祎-t3f Жыл бұрын
Thanks a lot! Very helpful!
@mdmahmudulhasanmiddya96322 жыл бұрын
U r very knowledgeable person.
@tilestats2 жыл бұрын
Thank you!
@dr0248 ай бұрын
very clear! Thank you =)
@zk15602 жыл бұрын
Hi, I tried to reproduce what you are showing here in python but I got totally different results. The calculations that you are showing are on the numbers shown in the video or are you using something else as input?
@tilestats2 жыл бұрын
Yes, I used the example data in R. What is your output?
@nadhilala2 жыл бұрын
thank you so much for your explanation! it is very helpful
@tilestats2 жыл бұрын
Thank you!
@ebrahimfeghhi1777 Жыл бұрын
Great lecture
@Bommi-oz7rs8 ай бұрын
Is anybody having step by step notes for this sum.. Pls reply
@ernestamoore43852 жыл бұрын
Excellent video. One question though: How to choose whether to use CCA or PLS? The difference is that PLS maximises the covariance between the datasets whereas CCA maximises the correlation.
@tilestats2 жыл бұрын
I would use CCA for correlation and PLS for regression. I have a video about PLS as well: kzbin.info/www/bejne/jJealaKXqchlqKM
@JsoProductionChannel2 жыл бұрын
Thank you
@shaoneesaha60735 ай бұрын
Despite of negative coefficient value/ taller person has lower bp/heavier person has high bp. This is not clear to me. I also faced such type of result in CCA but cant interpret the result. Would anyone plz define me.
@tilestats4 ай бұрын
This is just a small data set so do not draw any biologic conclusion from it.
@Edward__1e6 ай бұрын
Don't miss out on a chat with Binance's CEO about the future - exclusive interview
@youssefsamernarouz8608 Жыл бұрын
Thank youuuu
@halilibrahimakgun75699 ай бұрын
Eigen vectors for Rx and Ry are wrong, different results calculated. Are yu sure about calculating eigen value of Rx and Ry. First and second eigen vectors and eigen values places are different.
@tilestats8 ай бұрын
If you run the following code in R for, for example, Ry, mat=matrix(c(-0.164,0.430, -0.322,0.722),2,2) eigen(mat) you will get the following eigenvectors and eigenvalues: $values [1] 0.51939343 0.03860657 $vectors [,1] [,2] [1,] 0.4262338 -0.8463918 [2,] -0.9046130 0.5325607 Please share your own calculations so that I can have a look.
@halilibrahimakgun75698 ай бұрын
Ry = [ -0.164 -0.322 0.430 0.722] But your given code in R , is transpose of this matrix. You give input matrix false. Or should we take transpose before taking eigenvectors? @tilestats
@tilestats8 ай бұрын
No, you fill in the numbers by column in R. If you like to fill in by rows instead, you do like this, which will give the exact same matrix and eigenvectors: mat=matrix(c(-0.164,-0.322, 0.430,0.722),2,2,byrow = TRUE) eigen(mat)
@halilibrahimakgun75698 ай бұрын
@@tilestats A = np.array([[-0.164, -0.322], [0.430, 0.722]]) # Calculate eigenvalues and eigenvectors eigenvalues, eigenvectors = np.linalg.eig(A) print("Eigenvalues:", eigenvalues) print("Eigenvectors:", eigenvectors) This code prints reverse of it, I dont know why there is difference in python
@tilestats8 ай бұрын
The way you rotate the data is arbitrary so it does not matter if you get the reverse values. The eigenvalues are correct, right?