Canonical correlation analysis - explained

  Рет қаралды 43,448

TileStats

TileStats

Күн бұрын

Пікірлер: 46
@knightzhang8387
@knightzhang8387 2 жыл бұрын
Wow, this is by far the only tutorial demonstrating a clear description of the CCA, and how to compute it. Thanks!
@tsunghanhsieh9085
@tsunghanhsieh9085 2 жыл бұрын
Oh My! This is the best explanation about CCA I have ever seen.
@Tom-sp3gy
@Tom-sp3gy 4 ай бұрын
Beautiful explanation … 3 min into the video and I understood the whole gist of CCA! Thankyou so much !!! Whoever said that complicated things cannot be explained simply?
@joshuagervin2845
@joshuagervin2845 Жыл бұрын
Thanks!
@EashwarMurali
@EashwarMurali Жыл бұрын
Is there further theory behind the equation introduced at 6:25? Can you suggest some reading material for concrete proofs?
@tilestats
@tilestats Жыл бұрын
Check wiki en.wikipedia.org/wiki/Canonical_correlation
@golshanshakeebaee868
@golshanshakeebaee868 2 жыл бұрын
Thank you very much for your clear explanation. Just wanted to say your voice is very similar to Professor Schmidt. Keep up the good work. best regards :)
@tilestats
@tilestats 2 жыл бұрын
Thank you!
@KS-df1cp
@KS-df1cp 2 жыл бұрын
What would have happened if we did not take inverse at 6:46 timestamp? What if we multiply all of them as it is? Thank you.
@khushpatelmd
@khushpatelmd 2 жыл бұрын
You are the best stats professor!! Thanks so much
@tilestats
@tilestats 2 жыл бұрын
Thank you!
@ernestamoore4385
@ernestamoore4385 2 жыл бұрын
@@tilestats Excellent video. One question though: How to choose whether to use CCA or PLS? The difference is that PLS maximises the covariance between the datasets whereas CCA maximises the correlation.
@milrione8425
@milrione8425 Жыл бұрын
So well explained!! Thank you!!
@yaweli2968
@yaweli2968 8 ай бұрын
Can you share a link to a nice multivariate linear regression dataset with at least 4 dependent variable and at least 2 outcome variables if possible?
@mgpetrus
@mgpetrus 6 ай бұрын
Thanks for your very didatical demostration. I was wondering why you didn't mentioned about the data transformation and the data standarlization previous start the analysis, mainly because the blood preasure and body size have distinct scales.
@tilestats
@tilestats 6 ай бұрын
Yes, you can standardize the data but you will get the same correlations with un-standardized data because you later on instead standardize the scores as I explain at 10:56.
@Davide-yg5ny
@Davide-yg5ny 2 жыл бұрын
you're a life-saver
@aakashyadav1589
@aakashyadav1589 2 жыл бұрын
Your stats videos are great.
@tilestats
@tilestats 2 жыл бұрын
Thank you!
@杨佳祎-t3f
@杨佳祎-t3f Жыл бұрын
Thanks a lot! Very helpful!
@mdmahmudulhasanmiddya9632
@mdmahmudulhasanmiddya9632 2 жыл бұрын
U r very knowledgeable person.
@tilestats
@tilestats 2 жыл бұрын
Thank you!
@dr024
@dr024 8 ай бұрын
very clear! Thank you =)
@zk1560
@zk1560 2 жыл бұрын
Hi, I tried to reproduce what you are showing here in python but I got totally different results. The calculations that you are showing are on the numbers shown in the video or are you using something else as input?
@tilestats
@tilestats 2 жыл бұрын
Yes, I used the example data in R. What is your output?
@nadhilala
@nadhilala 2 жыл бұрын
thank you so much for your explanation! it is very helpful
@tilestats
@tilestats 2 жыл бұрын
Thank you!
@ebrahimfeghhi1777
@ebrahimfeghhi1777 Жыл бұрын
Great lecture
@Bommi-oz7rs
@Bommi-oz7rs 8 ай бұрын
Is anybody having step by step notes for this sum.. Pls reply
@ernestamoore4385
@ernestamoore4385 2 жыл бұрын
Excellent video. One question though: How to choose whether to use CCA or PLS? The difference is that PLS maximises the covariance between the datasets whereas CCA maximises the correlation.
@tilestats
@tilestats 2 жыл бұрын
I would use CCA for correlation and PLS for regression. I have a video about PLS as well: kzbin.info/www/bejne/jJealaKXqchlqKM
@JsoProductionChannel
@JsoProductionChannel 2 жыл бұрын
Thank you
@shaoneesaha6073
@shaoneesaha6073 5 ай бұрын
Despite of negative coefficient value/ taller person has lower bp/heavier person has high bp. This is not clear to me. I also faced such type of result in CCA but cant interpret the result. Would anyone plz define me.
@tilestats
@tilestats 4 ай бұрын
This is just a small data set so do not draw any biologic conclusion from it.
@Edward__1e
@Edward__1e 6 ай бұрын
Don't miss out on a chat with Binance's CEO about the future - exclusive interview
@youssefsamernarouz8608
@youssefsamernarouz8608 Жыл бұрын
Thank youuuu
@halilibrahimakgun7569
@halilibrahimakgun7569 9 ай бұрын
Eigen vectors for Rx and Ry are wrong, different results calculated. Are yu sure about calculating eigen value of Rx and Ry. First and second eigen vectors and eigen values places are different.
@tilestats
@tilestats 8 ай бұрын
If you run the following code in R for, for example, Ry, mat=matrix(c(-0.164,0.430, -0.322,0.722),2,2) eigen(mat) you will get the following eigenvectors and eigenvalues: $values [1] 0.51939343 0.03860657 $vectors [,1] [,2] [1,] 0.4262338 -0.8463918 [2,] -0.9046130 0.5325607 Please share your own calculations so that I can have a look.
@halilibrahimakgun7569
@halilibrahimakgun7569 8 ай бұрын
Ry = [ -0.164 -0.322 0.430 0.722] But your given code in R , is transpose of this matrix. You give input matrix false. Or should we take transpose before taking eigenvectors? @tilestats
@tilestats
@tilestats 8 ай бұрын
No, you fill in the numbers by column in R. If you like to fill in by rows instead, you do like this, which will give the exact same matrix and eigenvectors: mat=matrix(c(-0.164,-0.322, 0.430,0.722),2,2,byrow = TRUE) eigen(mat)
@halilibrahimakgun7569
@halilibrahimakgun7569 8 ай бұрын
@@tilestats A = np.array([[-0.164, -0.322], [0.430, 0.722]]) # Calculate eigenvalues and eigenvectors eigenvalues, eigenvectors = np.linalg.eig(A) print("Eigenvalues:", eigenvalues) print("Eigenvectors:", eigenvectors) This code prints reverse of it, I dont know why there is difference in python
@tilestats
@tilestats 8 ай бұрын
The way you rotate the data is arbitrary so it does not matter if you get the reverse values. The eigenvalues are correct, right?
Canonical Correlation Analysis (CCA)
14:59
ML & DL Explained
Рет қаралды 1,9 М.
Correlation Analysis - Full Course in 30 min
27:00
DATAtab
Рет қаралды 84 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Canonical Correlation Analysis-Introduction
30:07
Max Turgeon
Рет қаралды 6 М.
Principal component regression (PCR) - explained
14:48
TileStats
Рет қаралды 28 М.
Covariance and the correlation matrix - with simple examples
22:21
In Statistics, Probability is not Likelihood.
5:01
StatQuest with Josh Starmer
Рет қаралды 1,3 МЛН
Statistics - Canonical Correlation 1, What is it?
9:08
Canonical Correspondence Analysis
31:12
Nancy McIntyre
Рет қаралды 10 М.
PCA : the basics - explained super simple
22:11
TileStats
Рет қаралды 63 М.
Statistics 101: Understanding Correlation
27:05
Brandon Foltz
Рет қаралды 723 М.