Circle Overlap Challenge: Find the Hidden Area of This Red Rectangle

  Рет қаралды 2,924

The Phantom of the Math

The Phantom of the Math

Күн бұрын

Пікірлер: 19
@nandisaand5287
@nandisaand5287 Ай бұрын
I took the analytical geometry approach and got there, but because life just isnt hard enough, I made O(0,0) the intersection of AB and CD: Sm Circle: X²+(Y-K1)²=9 Lg Circle: X²+(Y-K2)²=25 K1-K2=6 {Lots of overly difficult Algebra later...} 12K2-12Y=(-52) Since @ O, Y=0: 12K2=(-52) K2=(-52/12)=(-13/3) From there, I was able plug in as you show and get the answer.
@RAG981
@RAG981 Ай бұрын
Method 1. Rather simpler to find area of triangle BAD by Heron's formula = Root( 7x4x2x1)= rt56. Area BAD also = half of 6 times x, so x = rt56/3 = 2rt14/3, width rect = 4rt14/3, and area = 8rt14. Method 2 works fine. Whole thing is a simple problem dressed up.
@bjorntorlarsson
@bjorntorlarsson Ай бұрын
Even simpler after Heron: Area of triangle BAD = rt(7x8) is also 1/4 of the area of the rectangle.
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq Ай бұрын
I like to say to take ADBC as a KITE. +++++--++++++++++ Being a kite, the diagonals intersect each other perpendicularly and the longer diagonal bisects the shorter diagonal. +++++++++ Then the proof will be shorter. We only have to evaluate the area of 🔺 ADB using Heron formula ++++++++++++++ and multiply the area with 4 to have the area of the rectangle.
@babisstafulas7874
@babisstafulas7874 Ай бұрын
IF K1 and K2 are the centers of two circles and A,B the common points of them then we have a 4 sides K1AK2B WITH 3,5,5,3 and diagonios 6. 2) Area of one triange is A=sq(τ(τ-α)(τ-β)(τ-γ))= sq(7*1*2*4)=2*sq(14) 3) From the type of area base*height/2 we have h=2*sq(14)/3 for K1AK2 triangle (base 6) 4) The other diagonios of K1AK2B is 4*sq(14)/3 5) The asking area is 6*4*sq(14)/3=8*sq(14)~29,93 s.u. Thank's NGE iF you can answer from what country are you from? Again thank's!
@MelcomMulder
@MelcomMulder Ай бұрын
South Africa
@bpark10001
@bpark10001 Ай бұрын
There is another way to solve. Use Heron's formula to find triangle ABD area & divide by base to get height. Area is √(7*4*2*1) = 2√14. Height OD is (2√14)/3. CD = (4√14)/3. Area rectangle = ((4√14)/3)(6) = 8√14. Problems should be calculated with exact answers. The exact answer is 8 √14.
@sorourhashemi3249
@sorourhashemi3249 Ай бұрын
Interesting. The center of small circle marks as O and big one M. Connect o to Q and Q to M. Focus on triangle OQM . OQ=3, QM=5 and OM=6. By Heron formula that area is 7.48. And the height of this triangle is ~2.5. 2.5×2=5 which is the width of t Rectangle . and area is 5×6=30
@bjorntorlarsson
@bjorntorlarsson Ай бұрын
Instead of calulating the height of the triangle, one can just multiply the area of triangle OQM by 4 to get the area of the rectangle. Move one part of the triangle, and put it along the diagonal of the rectangle to make it obvious. One doesn't need to use the height (or the half-width of the rectangle).
@marioalb9726
@marioalb9726 Ай бұрын
Triangle ABC, sides & semi perimeter : R= 5cm ; r = 3cm ; b=6cm ; s=7cm (¼A)²=s(s-a)(s-b)(s-c)=7(7-3)(7-5)(7-6) A = 8√14 = 29,93cm² ( Solved √ )
@marioalb9726
@marioalb9726 Ай бұрын
A₁=πR² --> R²=A₁/π --> R= 5cm A₂=πr² --> r²=A₂/π --> r = 3cm Triangle ABC: A₃²=s(s-a)(s-b)(s-c) A₃²=7(7-3)(7-5)(7-6) = √56 = 2√14 cm² Red shaded rectangle : A = 4A₃ = 8√14 = 29,93cm² ( Solved √ )
@vishalmishra3046
@vishalmishra3046 Ай бұрын
From area of the 2 circles, the radii = 3 and 5. So, area of triangle ABC = √ [ s (s-a) (s-b) (s-c) ] where s = (3+5+6)/2 = 7, so Area Δ = √ [ 7 x 4 x 2 x 1 ] = 2 x √14 Area of rectangle = 2 x each half = 2 x (2 x Area ΔABC) = 4 x 2 x √14 = 8 √14 = 8 x 4 x √(1 - 2/16) =~ 32 (1 - 1/16) = 32 - 2 = 30 (using binomial approximation of square root). So, Answer = 8 √14 =~ 30 square units.
@concerned9890
@concerned9890 15 күн бұрын
I just used Desmos distance formulas lol
@gelbkehlchen
@gelbkehlchen Ай бұрын
Lösung: A = Mittelpunkt des großen Kreises, B = Mittelpunkt des kleinen Kreises, R = Radius des großen Kreises, r = Radius des kleinen Kreises, S = linker Schnittpunkt der beiden Kreise, T = rechter Schnittpunkt der beiden Kreise, M = Mittelpunkt der Strecke ST. Für die Fläche des großen Kreises gilt: π*R² = 25π |/π ⟹ R² = 25 |√() ⟹ R = 5 Für die Fläche des kleinen Kreises gilt: π*r² = 9π |/π ⟹ r² = 9 |√() ⟹ r = 3 Pythagoras: (1) AM²+SM² = R² (2) BM²+SM² = r² ⟹ (1a) AM²+SM² = 5² (2a) (6-AM)²+SM² = 3² ⟹ (2b) 36-12*AM+AM²+SM² = 3² ⟹ (1a) - (2b) = (3) -36+12*AM = 25-9 = 16 |+36 ⟹ (3a) 12*AM = 52 |/12 ⟹ (3b) AM = 52/12 = 13/3 |in (1a) ⟹ (1b) (13/3)²+SM² = 5² |-(13/3)² ⟹ (1c) SM² = 5²-(13/3)² = 25-169/9 = (225-169)/9 = 56/9 |√() ⟹ (1d) SM = √56/3 ⟹ Fläche des roten Rechtecks = 2*SM*6 = 2*√56/3*6 = 4*√(4*14) = 8*√14 ≈ 29,9333 Solution: A = center of the large circle, B = center of the small circle, R = radius of the large circle, r = radius of the small circle, S = left intersection point of the two circles, T = right intersection point of the two circles, M = center of the line ST. The following applies to the area of ​​the large circle: π*R² = 25π |/π ⟹ R² = 25 |√() ⟹ R = 5 The following applies to the area of ​​the small circle: π*r² = 9π |/π ⟹ r² = 9 |√() ⟹ r = 3 Pythagoras: (1) AM²+SM² = R² (2) BM²+SM² = r² ⟹ (1a) AM²+SM² = 5² (2a) (6-AM)²+SM² = 3² ⟹ (2b) 36-12*AM+AM²+SM² = 3² ⟹ (1a) - (2b) = (3) -36+12*AM = 25-9 = 16 |+36 ⟹ (3a) 12*AM = 52 |/12 ⟹ (3b) AM = 52/12 = 13/3 |in (1a) ⟹ (1b) (13/3)²+SM² = 5² |-(13/3)² ⟹ (1c) SM² = 5²-(13/3)² = 25-169/9 = (225-169)/9 = 56/9 |√() ⟹ (1d) SM = √56/3 ⟹ Area of ​​the red rectangle = 2*SM*6 = 2*√56/3*6 = 4*√(4*14) = 8*√14 ≈ 29.9333
@marioalb9726
@marioalb9726 Ай бұрын
A₁=πR² --> R²=A₁/π --> R= 5cm A₂=πr² --> r²=A₂/π --> r = 3cm Triangle ABC: A₃²=s(s-a)(s-b)(s-c) A₃²=7(7-3)(7-5)(7-6) = √56 = 2√14 cm² Red shaded rectangle : A = 4A₃ = 8√14 = 29,93cm² ( Solved √ )
@marioalb9726
@marioalb9726 Ай бұрын
A₁=πR² --> R²=A₁/π --> R= 5cm A₂=πr² --> r²=A₂/π --> r = 3cm Triangle ABC: A²=s(s-a)(s-b)(s-c)=7(7-3)(7-5)(7-6) A = √56 = 2√14 cm² = ½b.x x = 2A/b = 2*2√14/6 = 2/3 √14 cm Red shaded rectangle : h = 2x =4/3 √14 = 4,989 cm A = b.h = 6*4,989 = 29,93cm²
Pac-Man Outsmarting Math: Can You Calculate the Shaded Area?
8:54
The Phantom of the Math
Рет қаралды 1,1 М.
Can YOU Find the Red Triangle’s Area? | Geometry Puzzle
14:06
The Phantom of the Math
Рет қаралды 8 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Why is there no equation for the perimeter of an ellipse‽
21:05
Stand-up Maths
Рет қаралды 2,3 МЛН
This pattern breaks, but for a good reason | Moser's circle problem
16:13
Do You Have What It Takes to Solve This Red Area Puzzle?
8:14
The Phantom of the Math
Рет қаралды 4,9 М.
Find the Area of the Sandwiched Triangle | Geometry Puzzle
8:31
The Phantom of the Math
Рет қаралды 2,8 М.
Some silly number systems
8:17
Random Andgit
Рет қаралды 238 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 209 М.
Can you crack this beautiful equation? - University exam question
18:39
Geometry: Is It Possible to Find the Length of the Red Line
9:30
The Phantom of the Math
Рет қаралды 6 М.
Math Puzzle | The Area of the Given Shaded Triangle?
18:20
The Phantom of the Math
Рет қаралды 3,4 М.
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 215 М.