@@codebasics BAM!! :P Btw, the way you explained Yolo that was superb, bro!
@sandydsa3 жыл бұрын
Yes! Minor comment, kindly please switch age and matches won. Got confused at first 😂
@ManigandanThangaraj Жыл бұрын
Nice explanation .. Adding to that L2 Ridge : Goal is to prevent multicollinearity and control magnitude of the coefficients where highly corelated features can be removed by shirking the coefficients towards to zero not exactly zero , stability and generalization. L1 Lasso : Goal is to prevent sparsity in the model by shirking the coefficients exactly to zero , importance in feature selection, preventing overfitting..
@r0cketRacoon4 ай бұрын
so, in what cases should we use L1 and L2?
@AlonAvramson3 жыл бұрын
I have been following all 17 videos on ML you provided so far and found this is the best resource to learn from . Thank you!
@DrizzyJ776 ай бұрын
Bro, you don't know how you've helped me in my computer vision journey. Thank you❤❤❤
@Hari-xr7ob3 жыл бұрын
you should probably change the X and Y axes. Matches won is a function of Age. So, Age should be on X axis and Matches won on Y axis
@hansamaldharmananda96053 жыл бұрын
That will more familiar. :D
@kj7767 Жыл бұрын
familiar where !@@hansamaldharmananda9605
@parthasarothi22952 ай бұрын
you just said my words
@gyanaranjanbal10 Жыл бұрын
Clean, crisp and crystal clear, I was struggling to understand this from a long time, your 20 mins video cleared it in one attempt, thanks a lot💌💌
@bors1n3 жыл бұрын
thank you a lot, I'm from Russia and I'm student. I watch your video about ML and It helps me to understand better
@codebasics3 жыл бұрын
Glad to hear that!
@shashankdhananjaya99233 жыл бұрын
Couldn't have explained it any simpler. Perfect tutorial.
@codebasics3 жыл бұрын
Glad it helped!
@ambujbaranwal93512 ай бұрын
00:04 L1 and L2 regularization help address overfitting in machine learning 02:12 Balancing between underfitting and overfitting is crucial for effective model training. 04:26 Regularization shrinks parameters for better prediction function 06:47 L2 regularization penalizes the overall error and leads to simpler equations. 09:14 Filtering and handling NA values in a dataset 12:02 Dropping NA values and converting categorical features into dummies for machine learning in Python. 14:28 Understanding the issues of overfitting in linear regression model 17:00 Regularization techniques like L1 and L2 improve model accuracy. 19:16 Encouraging viewers to like and share the video
@RadioactiveChutney2 жыл бұрын
Note for myself: This is the guy... his videos can clear doubts with codes.
@codebasics2 жыл бұрын
ha ha .. thank you 🙏
@NafisAnsari-vr2xqКүн бұрын
For a different parameter of train test split ( train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=2) the test score is 0.13%, using the regular train test split parameter the scores are similar to 67-68%. No point in trying the regularization on these scores. Yet I tried them on these with some changes and there wasn't any significant change. For anyone with the same scenario, Just try to remember that regularization can be used when the scores for training and testing data has a significant difference, could be underfitting or overfitting.
@ajaykushwaha-je6mw3 жыл бұрын
Best tutorial on l1 and L2 Regularization.
@tusharsethi28013 жыл бұрын
One of the best videos out there for Regularization.
@yash422vd3 жыл бұрын
As per the equation y = mX + c, you inter-changed the y & X axis, if I'm not wrong. Because you are trying to predict match won(yhat) which is your horizontal line and age(X) is on vertical line. Maybe using something unconventional mislead new-learners. As X is a horizontal line and y is vertical line, that's what we learned since school time. Assigning X & y to axis(as per your explanation) will be great help to learner. I hope you are not taking personally. My opologies if so!
@lazzy51732 ай бұрын
Summary: - L1 regularization helps in feature selection. -L2 regularization helps in preventing overfitting.
@atulupadhyay15423 жыл бұрын
machine learning concepts and practicals made easy, Thank you so much Sir
@codebasics3 жыл бұрын
I am happy this was helpful to you.
@bruh-jr6wj10 ай бұрын
I believe the most appropriate imputing method here is to group by the similar type of houses and then fill with the mean value of the group. For example, if the average is, say, 90 m^2, and the home is only a flat, the building area is incorrectly imputed.
@nexthome14454 жыл бұрын
Kindly make video on Feature selection for Regression and classification problem
@bhavikjain10773 жыл бұрын
A good video to understand the practical implementation of L1 and L2. Thank You
@haintuvn3 жыл бұрын
Thank you for your interesting video. As far as I get from the video, L1, L2 regulations help to overcome the overfit problem from Linear regression! What is about other algorithms ( Support vector machine, logistic regression..) , how can we overcome the overfit problem?
@nastaran101010 ай бұрын
best learning with very good explanation. Thanks
@koustavbanerjee81953 жыл бұрын
Please do videos about XGBoost, LGBoost !! You Videos Are Pure GOLD !!
@mukeshkumar-kh2fh2 жыл бұрын
thank you for helping the DS community
@javiermarchenahurtado70132 жыл бұрын
Such a great video!! I was struggling to understand regularization and now it's crystal clear to me!
@piyushlanjewar62742 жыл бұрын
That's a really great explanation, Anyone can use this method in real use cases now. Keep it up.
@amruth33 жыл бұрын
Sir your all the vedios are really helpful...Now Iam giving you the feed back of the vedio Iam going to see.This is also an beautiful vedio and Hyperparamter tuning also an very best vedio......God Bless you..u..work hard in getting think to understand in easy manner..
@nationhlohlomi9333 Жыл бұрын
I really love your content….. You change lives❤❤❤
@DarkTobias74 жыл бұрын
These are the videos we like!!!
@codebasics4 жыл бұрын
Thanks DarkTobias. Good to see your comment.
@NeekaNeeksz7 ай бұрын
Clear introduction. Thanks
@kaizen520712 жыл бұрын
Nice video....good lesson......funny enough i see my house address in the dataset
@king1_one9 ай бұрын
good explanation sir and you need appreciation , i am here .
@phil97n2 ай бұрын
Awesome explanation, thanks.
@Ultimate696642 жыл бұрын
thank you ! this video save my exam :)
@joehansie60143 жыл бұрын
All your videos are totally great. Keep working on it
@phuonglethithanh8498 Жыл бұрын
Thank you for this video. Very straightforward and comprehensive ❤
@anvarshathik7842 жыл бұрын
achine learning concepts and practicals made easy, Thank you so much Sir
@codebasics2 жыл бұрын
You are most welcome
@ankitmaheshwari73103 жыл бұрын
Good.model representation is good.hoping some deep knowledge in next video
@nehareddy46192 жыл бұрын
I really liked your way of explanation sir
@vyduong276 Жыл бұрын
I can understand it now, thanks to you 🥳
@ALLINONETV14 жыл бұрын
Please continue ....
@leonardomenar552 жыл бұрын
Excellent Tutorial, Thanks.
@mohammadrasheed92472 жыл бұрын
Nice Explanation. Also Recommended to play on 2X
@dylanloh53272 жыл бұрын
Thank you vm for this video. This is straight-forward and simple to understand!
@codebasics2 жыл бұрын
👍👍😊
@vishvam13074 жыл бұрын
Nice explanation
@rohantalaviya1367 ай бұрын
Really great video
@PollyMwangi-cp3jn8 ай бұрын
Thanks so much sir. Great content
@davuthdy8763 жыл бұрын
Thank for your video for sharing to the world.
@codebasics3 жыл бұрын
I am glad you liked it
@priyankshekhar24543 жыл бұрын
Very good videos by you on each topic..thanks !!
@kouider763 жыл бұрын
Just came across this video accidentally simply great thank you
@joehansie60143 жыл бұрын
Simple but powerful😎👍
@marthanyarkoa9007 Жыл бұрын
Thanks so simple ❤😊
@bryteakpakpavi6373 жыл бұрын
You are the best.
@codebasics3 жыл бұрын
Glad it was helpful!
@jongcheulkim72842 жыл бұрын
Thank you. This is very helpful.
@tanishsadhwani7302 жыл бұрын
Amazing sir thank you so much
@ayenewyihune2 жыл бұрын
Cool video
@analuciademoraislimalucial60393 жыл бұрын
Thank you so much teacher
@alielakroud17864 жыл бұрын
Hi Sir, Thanks for all this tutorials in ML. I've tried to use this syntaxe above, but when i fit my model the score using trainning data is 0.68 whereas the reg.scores using Test data is just weird.score(X_test,Y_test) =--17761722756.9913 dummies=pd.get_dummies(df[['Suburb','Type','Method','SellerG','CouncilArea','Regionname']]) Merge=pd.concat([df,dummies],axis='columns') final=Merge.drop(['Suburb','Type','Method','SellerG','CouncilArea','Regionname'],axis='columns') final 2nd part of my question is when i use L1 and L2 Regularization the score seem correct 0.66 and 0.67 I would also mentionned that when i've used LabelEncoder i find a score test data 0.44 and Trainning data 0.42 Thanks in advance for your answers
@ajgameboy6930 Жыл бұрын
Same here, I really don't know what went wrong...
@ajgameboy6930 Жыл бұрын
Hey, quick update, I found out the problem in my scenario... I had filled NaN values of price with mean, which caused the problem... Now that I have dropped 'em, it's working fine... Hope you had also solved the problem (you must've, ur comment is from 2 years back XD)
@swL1941 Жыл бұрын
Great video. However, It would have been better if you had provided the justification for assigning Zeros to few NaN values and giving mean to frew records. I know "its safest to assume" butt hen I believe in real world projects we cannot just assume things.
@unifarzor72372 жыл бұрын
Always excellent lessons, thank you
@HA-bj5ck11 ай бұрын
Appreciate the efforts, but there were issues with the foundational understanding. Additionally, the inclusion of dummy variables expanded the columns to 745 without acknowledgement or communication regarding its potential adverse effects to viewers was not expected.
@noahrubin3753 жыл бұрын
Not all superheroes wear capes!
@m.shiqofilla42463 жыл бұрын
Very nice video sir but at first i hoped you show the plot of scatter plot of the data and how the curve of the L1/L2 regression...
@aadityashukla85352 жыл бұрын
good theory!
@ravikumarrai73253 жыл бұрын
Awesom video....really awesom..
@codebasics3 жыл бұрын
Glad you liked it
@denisvoronov65713 жыл бұрын
Nice example. Thank you so much!
@codebasics3 жыл бұрын
Glad you liked it!
@nikolinastojanovska2 жыл бұрын
great video, thanks!
@SahilAnsari-gl3xu3 жыл бұрын
Thank a lot Sir❤️ Very good teaching style (theory+practical)👍
@sanooosai10 ай бұрын
thank you great work
@daretoschool41133 жыл бұрын
Please make video for genetic algorithm
@ayusharora20193 жыл бұрын
Very well explained !!
@codebasics3 жыл бұрын
Glad it was helpful!
@JAVIERHERNANDEZ-wp6qj Жыл бұрын
Maybe in the Cost formula, the indices for summation should be different (in general): for the MSE term the sum should be over the entire training dataset (in this case n), and the sum for the regularization term should run over the number of features or columns in the dataset
@cvino0618Ай бұрын
there isnt a paid course on udemy better than the information I am gaining here
@MrMadmaggot2 жыл бұрын
First when you apply lasso, you apply it apart from the first linear regression model you made right? Which means applying scikit Lasso is like making a linear regression but with regularization or it is applied to the linear regresion from the cell above?? So what if I use a knn or a forest?
@anseljanson51713 жыл бұрын
Thank you for this video why did you drop na value price column even though it had more than 7000 na values wont it affect the prediction??
@mkt49413 жыл бұрын
You cannot accurately make an assumption as to what the price is based on the available data, so you have to drop it.
@anseljanson51713 жыл бұрын
@@mkt4941 Thanks :)
@victorbenedict87434 жыл бұрын
Great tutorial sir.Its a privilege to be a fan of yours.Please sir could you please do a video on steps to carry out when doing data cleaning for big data.Thank you.
@gouravsapra86682 жыл бұрын
Hi...The equation, shouldn't it be : Theta0 + Theta1.x1 + Theta2.square (x1)+Theta3.cube (x1) rather than Theta0 + Theta1.x1 + Theta2.square (x2)+Theta3.cube (x3) because we have only one x feature ? 2) the Regularization expression (Lambda part), my understanding is that we should not take "i & n" , rather we should take "j & m" etc. The reason is that in first half of equation, we took "i & n" for number of rows whereas in second half, we need to take number of features, so different parameters should be used. Please correct me if my understanding is wrong.
@EngineerNick3 жыл бұрын
Thankyou for this it was very useful :)
@codebasics3 жыл бұрын
Glad it was helpful!
@nomanshaikhali33554 жыл бұрын
Kindly explain Boosting algos!!
@thoeer9132 жыл бұрын
I don't know how can you explain such a simple topic in so complicated manner. Your explanation caused more confusion than the topic itself.
@OceanAlves234 жыл бұрын
👨🎓👏✔, from Brazil-Teresina-PI
@codebasics4 жыл бұрын
Thanks Ocean. I wish you visit Brazil one day (especially Amazon rain forest :) )
@arjunbali20792 жыл бұрын
thanks sir
@SGandhi3 жыл бұрын
Can you make a video of ensemble model of using decision tree,knn and svm code
@adia97912 жыл бұрын
I think one must not use those imputations(mean) before train test split as it leads to data leakage, correct me if I am wrong.
@Piyush-yp2po4 ай бұрын
Taking mean for prices would have been a better choice
@nikhilsingh1296 Жыл бұрын
I really love learning from your Videos, they are pretty awesome. Just a concern, as in Line 11 we ran a missing value sum code where the Price Stated, 7610 and in the next line that is Line 12, we have dropped the 7610 rows, isn't it? Also, what was the other option if we would not have dropped the valued, can we not divide the data set and treat 50 percent of the missing values in Price and as a train dataset by imputing mean, and run the test on the missing price values. I am not sure, even if this is a valid question, but I am a bit curious. Also, what was the scope for PCA here?
@slainiae9 ай бұрын
I agree. The missing 'Price' values could have been estimated using one of the previously presented algorithms.
@anjalipatel90289 ай бұрын
L1,L2 Regularization is valid for regression algorithm only?
@rash_mi_be3 жыл бұрын
In L2 regularization, how can theta reduce when lambda increases, and increase when lambda decreases?
@sudharsanb93914 жыл бұрын
Sir pls put a video on xgboost, adaboost and gradient boosting
@swaralipibose97314 жыл бұрын
Yes please
@DHAiRYA28014 жыл бұрын
Yes!
@codebasics4 жыл бұрын
sure. looks like there is lot of demand for these topics, I have added them in my todo list
@duztv53704 жыл бұрын
@@codebasics please sir, we will be expecting. Thanks
@sunzarora3 жыл бұрын
Yes please!
@bhoomi53982 жыл бұрын
what is dual parameter and please explain what is primal formal & dual
@TheOraware3 жыл бұрын
0.01*4=0.04 , here 0.01 is lambda and 4 is theta , 0.1*4=0.4 , here same 0.1 is lmada and 4 is theta. When i increase lambda then product of lambda increase hence cost function increase not theta value at @6:47
@Piyush-yp2po4 ай бұрын
Got 45% accuracy for normal reg, l1 and l2
@_k_kd7 ай бұрын
but you have dropped more then 7000 price with Na
@PRIYASHARMA-cr8ff5 ай бұрын
same I was also thinking the same
@tjbwhitehea13 жыл бұрын
Hey, great video thank you. Quick question - what's the best way to find the optimal alpha? Do you do a grid search?
@codebasics3 жыл бұрын
Yes doing grid search would be a way
@sunzarora3 жыл бұрын
Nice video, my question is what will u do so accuracy will jump on this dataset from 67 to 90+?
@ajaysaroha25394 жыл бұрын
Sir,I am fresher & want to make career in finance domain data analyst & I have no any experience in finance domain so how can I gain knowledge in finance domain so pls give some suggestion about it.
@junaidlatif28812 жыл бұрын
Amazing. But how to select best alpha value?
@zappist7512 жыл бұрын
cross validation :)
@gefett3 жыл бұрын
Thank's for class it's very clearly for me. But I had a problem to create a sending file my code from to Kaggle, help me please.
@Ilya_42763 жыл бұрын
thanks
@codebasics3 жыл бұрын
Welcome
@tigrayrimey64183 жыл бұрын
Exchange the variables pls. Put matches won on Y-axis and age on X-axis.