Variational Autoencoders - EXPLAINED!

  Рет қаралды 147,538

CodeEmporium

CodeEmporium

Күн бұрын

Пікірлер: 126
@benjaminbong
@benjaminbong 4 жыл бұрын
Awesome tutorial! I've been struggling to userstand VAEs, and this helped me finally get an idea how they work! Thank you!
@jinoopark6034
@jinoopark6034 5 жыл бұрын
I love your explanation. Please make a more math-oriented video on VAE!
@diato2993
@diato2993 Жыл бұрын
the best explanation for beginners, thank you so much!
@CodeEmporium
@CodeEmporium Жыл бұрын
You are super welcome :)
@retime77
@retime77 5 жыл бұрын
Thanks for intuitive explanation. I'm really looking forward to see more detailed exploration on the VAE and its variants as noted in the last of the video.
@rajpulapakura001
@rajpulapakura001 Жыл бұрын
Thanks for the vid, now I finally understand VAEs. I would also highly recommend watching the MIT Deep Generative Modelling video to better understand the technical details of VAEs.
@DarshanSenTheComposer
@DarshanSenTheComposer 5 жыл бұрын
Brilliant explanation! I have watched many videos on this topic, but most of them either throw some weird and unknown mathematical equation at you, which they just assume that you'll understand without a proper explanation and the rest just throws lines of python code at you, where the functions and parameters have thicc statistical names. You explained this like it is just a piece of cake! Thank you. :D
@DB-in2mr
@DB-in2mr Жыл бұрын
whow ...you showed a great deal of expalanation capacity man! kudos to you. Daniele
@tobuslieven
@tobuslieven 3 жыл бұрын
6:17 If passing in a random vector outputs garbage, then there are excess degrees of freedom in the vector. The variational autoencoder seems to be limiting the set of input vectors, so when we choose one from the limited set, we're assured it won't output garbage.
@vandarkholme442
@vandarkholme442 3 жыл бұрын
So is that how the KL loss comes to play? by limiting input hidden vectors region?
@Multibjarne
@Multibjarne 4 жыл бұрын
I needed someone to spoonfeed me this stuff. Thanks
@monil_soni
@monil_soni Жыл бұрын
Thanks for this! Helped me understand the need for defining a region for these pools and consequently, having the K-L divergence in optimization. Up until now, I only looked at that regularization term as intentionally having information loss and now it makes sense that we need that to make the generator more useable for "varying" outputs.
@mariolinovalencia7776
@mariolinovalencia7776 5 жыл бұрын
Best video on vae. Finally I understand
@emransaleh9535
@emransaleh9535 5 жыл бұрын
Keep doing this nice work about deep learning concepts and papers. You will go far with this channel.
@eyujis2
@eyujis2 2 жыл бұрын
Thank you so much for the didactic explanation, it really helped me to understand the fundamental concepts before exploring the math behind it.
@GoKotlinJava
@GoKotlinJava 4 жыл бұрын
awesome and simple explanation. I was confused and wondering about the sampling part that VAE's do because i didn't understand what was meant by sampling a latent vector from a distribution. But you made it so easy to understand. Thanks a lot. Keep up the good work
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Thanks homie. I'm trying to not hid hide behind the jargon. But it can be hard at times. I'll explain myself when I can
@saptakatha
@saptakatha 4 жыл бұрын
Please make a video on maths behind VAE. Your way of explaining things makes it easy to understand the hard concepts!
@ЕгорАбросимов-л2о
@ЕгорАбросимов-л2о 2 жыл бұрын
This is some GREAT explanation here!
@joehaddad4945
@joehaddad4945 2 жыл бұрын
This video is pure gold. Thank you so much!
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Super welcome :)
@dt28469
@dt28469 3 жыл бұрын
Wow that dog barking noise tripped my brain out so hard. Because my neighbor's dog always barks, my brain tuned out the sound of the bark until I reasoned he was taking about the sound of dogs barking. Neural networks aren't intelligent enough to behave in these ways.
@ArchithaKishoreSings
@ArchithaKishoreSings 5 жыл бұрын
Your channel is absolutely incredible. Keep em coming☺️
@eduardoblas2315
@eduardoblas2315 5 жыл бұрын
Gold content, simple and entertaining, keep it going.
@__goyal__
@__goyal__ 4 жыл бұрын
Glad that I came across this channel!!
@NaxAlpha
@NaxAlpha 5 жыл бұрын
Love your channel. Looking forward to more research paper explanations!
@ssshukla26
@ssshukla26 4 жыл бұрын
A very good and clear explanation. Thanks.
@weilinfu1343
@weilinfu1343 5 жыл бұрын
Great video! Looking forward for the math part!
@xruan6582
@xruan6582 4 жыл бұрын
Good intuitive explanation. I need more details about how to train a VAE, which is die hard to understand by following stanford's introduction
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Trying to make this as accessable as possible. It is a hard topic and sometimes I might hide behind that jargon. But I'll try to explain myself when I can
@ParthivShah
@ParthivShah 4 ай бұрын
Thank you very much. Love from India.
@internationalenglish7413
@internationalenglish7413 5 жыл бұрын
Great work! Wish you a million subscribers.
@ambeshshekhar4043
@ambeshshekhar4043 3 жыл бұрын
+1 to the v.a.e video with lots of math!
@ArcticSilverFox1
@ArcticSilverFox1 3 жыл бұрын
Very nicely explained! Great job!
@miracode7327
@miracode7327 3 жыл бұрын
Reference list is good, subbed
@tariqislam9388
@tariqislam9388 8 ай бұрын
Thank you for this fantastic tutorial.
@caoshixing7954
@caoshixing7954 4 жыл бұрын
+1 to the v.a.e video with lots of math! thanks nice video!
@Vikram-wx4hg
@Vikram-wx4hg 4 жыл бұрын
Beautifully explained!
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Much appreciated
@MartinWanckel
@MartinWanckel Жыл бұрын
Very nicely explained !
@CodeEmporium
@CodeEmporium Жыл бұрын
Thanks so much :)
@gordonlim2322
@gordonlim2322 3 жыл бұрын
At 7:12, you said that generative models need to learn these "pools" or distribution. Which part of the autoencoder is that? Or is it separate from that? To my understanding, the autoencoder alone just learns the weights for the encoder and decoder.
@asheeshmathur
@asheeshmathur Жыл бұрын
Excellent explanation
@CodeEmporium
@CodeEmporium Жыл бұрын
Thanks a ton!
@XecutionStyle
@XecutionStyle 4 жыл бұрын
I think the reason the latent code is important is because that layer, that middle layer, has far fewer neurons than the input. So anything that's produced from there - has to come from a compressed form of the input.
@MayankKumar-nn7lk
@MayankKumar-nn7lk 5 жыл бұрын
Awesome Video, Pls show mathematics part in the next video
@joebastulli
@joebastulli 4 жыл бұрын
Thanks for the explanation, simple and clear!
@manuelkarner8746
@manuelkarner8746 5 жыл бұрын
Hy, that was the best var Autoencoder video I found on the internet, so thanks a lot, it realy helped ! I have 2 questions regarding min 10:22 continious region. 1: (if i understood it correctly this is a no): is the number of dog-verctors in the dog pool equal to the number of dog pics in the training-set ? 2: if you take the most average dog-verctor from the d-pool, to make it short lets say: [70, 10, 0.4] than could the whole pool be descirbed as each of the values has it´s range like: [70(+/-10), 10(+/- 2, 0.4(+/- 0.02) ] and as long as all values from a new latent space vector are in this range, I am in the dog pool and therfore generate an okey-looking dog ? (little bonus question so the number of values in the vector and the range of each determines how much different dogs the network is able to create ?) thank you in advance, i hope my question was understandable
@BlockOfRed
@BlockOfRed 4 жыл бұрын
Hi, 1: You understood that correctly, so no. As the region is continiuous, it contains an infinite amount of vectors. On the other hand, you know only as many vectors of that region as you have input images (as you generate one for each image). 2: Not every dog image leads to a vector withing this pool and not every vector within this pool generates a dog image. This is due to the fact that a) we don't really understand how NNs function internally and b) these "pools" are just an explanation of what's wrong with traditional AE. That is, they do not have to really exist in the "real world". 3: As traditional AE decoders are deterministic, yes. If your latent vector can only have one value, you can only generate one image. The "range" shown in the video is a slight simplification of what is really going on. That is, you do not set hard bounds for your latent variables, but you formulate this as minimizing the KL-divergence (Kullback-Leibler-divergence, i.e. the "distance" of two distributions), so that the latent distribution does not strive away too much from the standard distribution. I hope my answers were both understandable and correct :)
@cptechno
@cptechno 2 жыл бұрын
QUESTION CONCERNING VAE! Using VAE with images, we currently start by compressing an image into the latent space and reconstructing from the latent space. QUESTION: What if we start with the photo of adult human, say a man or woman 25 years old (young adult) and we rebuild to an image of the same person but at a younger age, say man/woman at 14 years old (mid-teen). Do you see where I'm going with this? Can we create a VAE to make the face younger from 25 years (young adult) to 14 years (mid-teen)? In more general term, can VAE be used with non-identity function?
@supnegi
@supnegi 3 жыл бұрын
That was incredible!
@sunti8893
@sunti8893 4 жыл бұрын
This is very useful video! Thank you :)
@FrankaBrou
@FrankaBrou Жыл бұрын
bro I jumped, I thought there was a dog next to me 00:38
@harshkumaragarwal8326
@harshkumaragarwal8326 4 жыл бұрын
you guys do a great job
@SurajBorate-bx6hv
@SurajBorate-bx6hv Жыл бұрын
Thanks for the awesome explanation. How to choose between VAEs and diffusion models ?
@dreamliu6867
@dreamliu6867 2 жыл бұрын
Wonderful explanation. Could you please make a math tutorial on VAE? Thanks
@ruksharalam173
@ruksharalam173 Жыл бұрын
So, if GANs produce better-quality images, is there any use for VAEs in the industry?
@niveyoga3242
@niveyoga3242 5 жыл бұрын
Tells there is so much potential & then brings an example, where I can build a photobook of my favorite animal! xD
@CodeEmporium
@CodeEmporium 5 жыл бұрын
Animal photo albums are all we need in this world.
@hihellohowrumfine
@hihellohowrumfine 9 ай бұрын
Can you make a deep math video on variational auto encoders?
@Leibniz_28
@Leibniz_28 5 жыл бұрын
🙋🏻‍♂️ another video of variational autoencoders, please
@bharathpreetham310
@bharathpreetham310 5 жыл бұрын
can i know which mic u r using for making these videos???
@Victor-he5hy
@Victor-he5hy 5 жыл бұрын
Very good video. Impressive
@MLDawn
@MLDawn 3 жыл бұрын
really really good video. Could you tell me something about the Gaussian prior on the bottleneck. 1) Do we learn the parameters of this Gaussian? 2) Is it only 1 Gaussian, or as you said, it is really a mixture of Gaussians (mathematically speaking)? Thanks
@maxjt11
@maxjt11 5 жыл бұрын
Thanks man, great vid
@avidreader100
@avidreader100 3 жыл бұрын
Good explanation. Perhaps after creating a blurry image, one can use another application for sharpening the features.
@sebastiaanvanbuisman1704
@sebastiaanvanbuisman1704 4 жыл бұрын
great vid! i appreciate this a lot
@pavanms6924
@pavanms6924 4 жыл бұрын
can you please make a video on probabilistic U nets
@user-ju5uv2lk3e
@user-ju5uv2lk3e Жыл бұрын
Thanks for this video :)
@CodeEmporium
@CodeEmporium Жыл бұрын
You are very welcome. Thank you for the thoughtful words
@baothach9259
@baothach9259 4 жыл бұрын
Amazing tutorial
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Thanks for watching!
@china_tours
@china_tours 2 жыл бұрын
Great explanation, but please make the slides (ppt) public.. thank you
@amr6859
@amr6859 3 жыл бұрын
Take home message: Variational Autoencoders can generate new data.
@threeMetreJim
@threeMetreJim 5 жыл бұрын
What happens if you know how many vector elements are needed to accurately define what you want to reproduce, and then add a few more that aren't defined by the input image, but represent the class of the desired output. Will this force all of the vector elements into their own pool? So you can pick any random vector and add to it the representation of the class, to only pick from that pool. This strategy works for the 'image painting' network by Andrej Karpathy, and it's how I switched between images for a different kind of image tweening. I still wonder exactly what kind of network the 'image painter' actually is. I'm guessing that the same technique should also work for a generative auto encoder. I came up with the idea based on how a person learns something; you get more than one input - I.e a picture and description, that goes in (both presented at the input, rather than one at the input and the other at the output), and is then mapped to just the wanted description.
@vinayreddy8683
@vinayreddy8683 4 жыл бұрын
Please make a video on Transformer and BERT architectures
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Gonna talk about that in my next video in a few days. Stay tuned :)
@vinayreddy8683
@vinayreddy8683 4 жыл бұрын
@@CodeEmporium thanks for the reply AJ. I was really surprised the way you changed your accent in such a short span of time, at one point I couldn't believe the fact that you're Thamil. Your content is amazing, I don't want to be selfish here, but I'd be happy if you can do more video's on NLP.
@Wabadoum
@Wabadoum 5 жыл бұрын
Nice video! I have two questions: You show that the pool of the VAE is continuous, but it also shows blanks, eg. all space isnt covered by the numbers. What does a sampling from these regions gives? Is it still close to a number? Second question, does the size of the pool affect the quality of an image generated? Like giving more space to the VAE allows it to learn with less constrains? Thanks!
@haralambiepapastathopoulos7876
@haralambiepapastathopoulos7876 5 жыл бұрын
Could you make a video for adaptive instance normalization (AdaIN)? It would be very useful, nobody on KZbin did this before
@thecurious926
@thecurious926 2 жыл бұрын
wait, then how is reconstruction done using an autoencoder?
@fatemerezaei6898
@fatemerezaei6898 Жыл бұрын
Amazing!
@tilu391
@tilu391 7 ай бұрын
if u r just taking a vector from pool , then isn't it just mapping of image->vector->image
@rishidixit7939
@rishidixit7939 Ай бұрын
How does the VAE enclose the distribution pools in a defined region ? This concept and its intuition is unclear
@hochmuch
@hochmuch 5 жыл бұрын
Спасибо, твои видео веселые и очень полезные | Thank you, your videos are funny and so useful
@СергейКривенко-р6я
@СергейКривенко-р6я 4 жыл бұрын
Чувак, веселый это fun, а funny это смешной, это два совсем разных слова.
@anandsharma16
@anandsharma16 3 ай бұрын
the dog bark messed me up man
@krishnagarg6870
@krishnagarg6870 4 жыл бұрын
Nice Video
@thebrothershow5826
@thebrothershow5826 3 жыл бұрын
You are amazing
@nikitasinha8181
@nikitasinha8181 Жыл бұрын
Thank you so much
@CodeEmporium
@CodeEmporium Жыл бұрын
Thank you for watching :)
@XecutionStyle
@XecutionStyle 4 жыл бұрын
$@#$ I thought there was a dog in the house
@artinbogdanov7229
@artinbogdanov7229 4 жыл бұрын
Thanks!
@DocTheDirector
@DocTheDirector 5 жыл бұрын
Need the mathy version of this video the explanation of the latent loss is awful
@lihuil3115
@lihuil3115 2 жыл бұрын
very good.
@HimanshuSingh-ej2tc
@HimanshuSingh-ej2tc 2 жыл бұрын
Make more mathematical detailed video
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Coming soon :)
@zarlishattique4167
@zarlishattique4167 2 жыл бұрын
Where is coding it's not explained till you practice it.. 🥺
@juanpabloaguilar4982
@juanpabloaguilar4982 4 жыл бұрын
I think is a very big mistake to say that auto encoders cannot used to generate data. That is very wrong and there are multiple applications which use images as inputs to generate images like for example how the baby from two parents will look like.
@rockapedra1130
@rockapedra1130 2 жыл бұрын
Was going well but ended without explaining ☹️
@fazilokuyanus3396
@fazilokuyanus3396 5 жыл бұрын
you are great!
@CodeEmporium
@CodeEmporium 5 жыл бұрын
You are too kind:)
@unnikrishnanms3431
@unnikrishnanms3431 5 жыл бұрын
@@CodeEmporium could you give a code for GAN?...
@tıbhendese
@tıbhendese 8 ай бұрын
Understood nothing about how this model works. Oversimplifications and storytelling makes it unpaired with the how the real thing work. Now I know : AE is reducing the input data into a smaller vector, VAE can generate blurry image. What I don't know : What is happening to input data and the dataset, what this pool intuition is for?
@CharlieYoutubing
@CharlieYoutubing 5 жыл бұрын
Thanks
@CodeEmporium
@CodeEmporium 5 жыл бұрын
Anytime :)
@leosmi1
@leosmi1 5 жыл бұрын
Thnx
@Flinsyflonsy
@Flinsyflonsy 4 жыл бұрын
10/10 because doggos.
@alexbarnadas
@alexbarnadas 4 жыл бұрын
My cat makes very different noises x'D
@shivkrishnajaiswal8394
@shivkrishnajaiswal8394 Жыл бұрын
Interesting
@programmingrush
@programmingrush 10 ай бұрын
Nice
@l.gunasekar832
@l.gunasekar832 3 жыл бұрын
Good
@pseudospectral2
@pseudospectral2 Жыл бұрын
I was here
@thejswaroop5230
@thejswaroop5230 3 жыл бұрын
ur neural network has a bias over dogs to cats lol
@SolathPrime
@SolathPrime 2 жыл бұрын
Kieet
@Lucas7Martins
@Lucas7Martins 5 жыл бұрын
Doggos!!!!!
@vladvladislav4335
@vladvladislav4335 5 жыл бұрын
Well, that's actually a totally wrong conceptual explaination of a VAE. Moreover, in the video you didn't name some absolutely cruicial points about VAEs, that one would expect to hear. Moremoremoreover, there are plenty of statistical and mathematical things, that are not obvious at all and need to be explained when speaking about VAEs. So this is indeed an explaination, but quite a bad one I could be more specific if anybody is interested, so let's start some discussion in the comments :D
@jg9193
@jg9193 5 жыл бұрын
I'm interested. Be more specific.
@est9949
@est9949 4 жыл бұрын
Well, please explain more.
@bidishadas842
@bidishadas842 5 жыл бұрын
Kahi bhi nahi jaate. Hamesha call karke puchte hai drop location kya hai or fir cancel karte !
@midunavarsini7288
@midunavarsini7288 Ай бұрын
I ld o bjexble46
@yacinek85
@yacinek85 5 жыл бұрын
Thanks
How to keep up with AI research?
12:20
CodeEmporium
Рет қаралды 15 М.
Variational Autoencoders
15:05
Arxiv Insights
Рет қаралды 524 М.
GIANT Gummy Worm #shorts
0:42
Mr DegrEE
Рет қаралды 152 МЛН
SLIDE #shortssprintbrasil
0:31
Natan por Aí
Рет қаралды 49 МЛН
178 - An introduction to variational autoencoders (VAE)
17:39
DigitalSreeni
Рет қаралды 48 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 417 М.
Transformer Neural Networks - EXPLAINED! (Attention is all you need)
13:05
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,2 МЛН
Understanding Variational Autoencoders (VAEs) | Deep Learning
29:54
The Reparameterization Trick
17:35
ML & DL Explained
Рет қаралды 25 М.
Attention in transformers, visually explained | DL6
26:10
3Blue1Brown
Рет қаралды 2 МЛН
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 351 М.
Simple Explanation of AutoEncoders
10:31
WelcomeAIOverlords
Рет қаралды 114 М.