Awesome tutorial! I've been struggling to userstand VAEs, and this helped me finally get an idea how they work! Thank you!
@jinoopark60345 жыл бұрын
I love your explanation. Please make a more math-oriented video on VAE!
@diato2993 Жыл бұрын
the best explanation for beginners, thank you so much!
@CodeEmporium Жыл бұрын
You are super welcome :)
@retime775 жыл бұрын
Thanks for intuitive explanation. I'm really looking forward to see more detailed exploration on the VAE and its variants as noted in the last of the video.
@rajpulapakura001 Жыл бұрын
Thanks for the vid, now I finally understand VAEs. I would also highly recommend watching the MIT Deep Generative Modelling video to better understand the technical details of VAEs.
@DarshanSenTheComposer5 жыл бұрын
Brilliant explanation! I have watched many videos on this topic, but most of them either throw some weird and unknown mathematical equation at you, which they just assume that you'll understand without a proper explanation and the rest just throws lines of python code at you, where the functions and parameters have thicc statistical names. You explained this like it is just a piece of cake! Thank you. :D
@DB-in2mr Жыл бұрын
whow ...you showed a great deal of expalanation capacity man! kudos to you. Daniele
@tobuslieven3 жыл бұрын
6:17 If passing in a random vector outputs garbage, then there are excess degrees of freedom in the vector. The variational autoencoder seems to be limiting the set of input vectors, so when we choose one from the limited set, we're assured it won't output garbage.
@vandarkholme4423 жыл бұрын
So is that how the KL loss comes to play? by limiting input hidden vectors region?
@Multibjarne4 жыл бұрын
I needed someone to spoonfeed me this stuff. Thanks
@monil_soni Жыл бұрын
Thanks for this! Helped me understand the need for defining a region for these pools and consequently, having the K-L divergence in optimization. Up until now, I only looked at that regularization term as intentionally having information loss and now it makes sense that we need that to make the generator more useable for "varying" outputs.
@mariolinovalencia77765 жыл бұрын
Best video on vae. Finally I understand
@emransaleh95355 жыл бұрын
Keep doing this nice work about deep learning concepts and papers. You will go far with this channel.
@eyujis22 жыл бұрын
Thank you so much for the didactic explanation, it really helped me to understand the fundamental concepts before exploring the math behind it.
@GoKotlinJava4 жыл бұрын
awesome and simple explanation. I was confused and wondering about the sampling part that VAE's do because i didn't understand what was meant by sampling a latent vector from a distribution. But you made it so easy to understand. Thanks a lot. Keep up the good work
@CodeEmporium4 жыл бұрын
Thanks homie. I'm trying to not hid hide behind the jargon. But it can be hard at times. I'll explain myself when I can
@saptakatha4 жыл бұрын
Please make a video on maths behind VAE. Your way of explaining things makes it easy to understand the hard concepts!
@ЕгорАбросимов-л2о2 жыл бұрын
This is some GREAT explanation here!
@joehaddad49452 жыл бұрын
This video is pure gold. Thank you so much!
@CodeEmporium2 жыл бұрын
Super welcome :)
@dt284693 жыл бұрын
Wow that dog barking noise tripped my brain out so hard. Because my neighbor's dog always barks, my brain tuned out the sound of the bark until I reasoned he was taking about the sound of dogs barking. Neural networks aren't intelligent enough to behave in these ways.
@ArchithaKishoreSings5 жыл бұрын
Your channel is absolutely incredible. Keep em coming☺️
@eduardoblas23155 жыл бұрын
Gold content, simple and entertaining, keep it going.
@__goyal__4 жыл бұрын
Glad that I came across this channel!!
@NaxAlpha5 жыл бұрын
Love your channel. Looking forward to more research paper explanations!
@ssshukla264 жыл бұрын
A very good and clear explanation. Thanks.
@weilinfu13435 жыл бұрын
Great video! Looking forward for the math part!
@xruan65824 жыл бұрын
Good intuitive explanation. I need more details about how to train a VAE, which is die hard to understand by following stanford's introduction
@CodeEmporium4 жыл бұрын
Trying to make this as accessable as possible. It is a hard topic and sometimes I might hide behind that jargon. But I'll try to explain myself when I can
@ParthivShah4 ай бұрын
Thank you very much. Love from India.
@internationalenglish74135 жыл бұрын
Great work! Wish you a million subscribers.
@ambeshshekhar40433 жыл бұрын
+1 to the v.a.e video with lots of math!
@ArcticSilverFox13 жыл бұрын
Very nicely explained! Great job!
@miracode73273 жыл бұрын
Reference list is good, subbed
@tariqislam93888 ай бұрын
Thank you for this fantastic tutorial.
@caoshixing79544 жыл бұрын
+1 to the v.a.e video with lots of math! thanks nice video!
@Vikram-wx4hg4 жыл бұрын
Beautifully explained!
@CodeEmporium4 жыл бұрын
Much appreciated
@MartinWanckel Жыл бұрын
Very nicely explained !
@CodeEmporium Жыл бұрын
Thanks so much :)
@gordonlim23223 жыл бұрын
At 7:12, you said that generative models need to learn these "pools" or distribution. Which part of the autoencoder is that? Or is it separate from that? To my understanding, the autoencoder alone just learns the weights for the encoder and decoder.
@asheeshmathur Жыл бұрын
Excellent explanation
@CodeEmporium Жыл бұрын
Thanks a ton!
@XecutionStyle4 жыл бұрын
I think the reason the latent code is important is because that layer, that middle layer, has far fewer neurons than the input. So anything that's produced from there - has to come from a compressed form of the input.
@MayankKumar-nn7lk5 жыл бұрын
Awesome Video, Pls show mathematics part in the next video
@joebastulli4 жыл бұрын
Thanks for the explanation, simple and clear!
@manuelkarner87465 жыл бұрын
Hy, that was the best var Autoencoder video I found on the internet, so thanks a lot, it realy helped ! I have 2 questions regarding min 10:22 continious region. 1: (if i understood it correctly this is a no): is the number of dog-verctors in the dog pool equal to the number of dog pics in the training-set ? 2: if you take the most average dog-verctor from the d-pool, to make it short lets say: [70, 10, 0.4] than could the whole pool be descirbed as each of the values has it´s range like: [70(+/-10), 10(+/- 2, 0.4(+/- 0.02) ] and as long as all values from a new latent space vector are in this range, I am in the dog pool and therfore generate an okey-looking dog ? (little bonus question so the number of values in the vector and the range of each determines how much different dogs the network is able to create ?) thank you in advance, i hope my question was understandable
@BlockOfRed4 жыл бұрын
Hi, 1: You understood that correctly, so no. As the region is continiuous, it contains an infinite amount of vectors. On the other hand, you know only as many vectors of that region as you have input images (as you generate one for each image). 2: Not every dog image leads to a vector withing this pool and not every vector within this pool generates a dog image. This is due to the fact that a) we don't really understand how NNs function internally and b) these "pools" are just an explanation of what's wrong with traditional AE. That is, they do not have to really exist in the "real world". 3: As traditional AE decoders are deterministic, yes. If your latent vector can only have one value, you can only generate one image. The "range" shown in the video is a slight simplification of what is really going on. That is, you do not set hard bounds for your latent variables, but you formulate this as minimizing the KL-divergence (Kullback-Leibler-divergence, i.e. the "distance" of two distributions), so that the latent distribution does not strive away too much from the standard distribution. I hope my answers were both understandable and correct :)
@cptechno2 жыл бұрын
QUESTION CONCERNING VAE! Using VAE with images, we currently start by compressing an image into the latent space and reconstructing from the latent space. QUESTION: What if we start with the photo of adult human, say a man or woman 25 years old (young adult) and we rebuild to an image of the same person but at a younger age, say man/woman at 14 years old (mid-teen). Do you see where I'm going with this? Can we create a VAE to make the face younger from 25 years (young adult) to 14 years (mid-teen)? In more general term, can VAE be used with non-identity function?
@supnegi3 жыл бұрын
That was incredible!
@sunti88934 жыл бұрын
This is very useful video! Thank you :)
@FrankaBrou Жыл бұрын
bro I jumped, I thought there was a dog next to me 00:38
@harshkumaragarwal83264 жыл бұрын
you guys do a great job
@SurajBorate-bx6hv Жыл бұрын
Thanks for the awesome explanation. How to choose between VAEs and diffusion models ?
@dreamliu68672 жыл бұрын
Wonderful explanation. Could you please make a math tutorial on VAE? Thanks
@ruksharalam173 Жыл бұрын
So, if GANs produce better-quality images, is there any use for VAEs in the industry?
@niveyoga32425 жыл бұрын
Tells there is so much potential & then brings an example, where I can build a photobook of my favorite animal! xD
@CodeEmporium5 жыл бұрын
Animal photo albums are all we need in this world.
@hihellohowrumfine9 ай бұрын
Can you make a deep math video on variational auto encoders?
@Leibniz_285 жыл бұрын
🙋🏻♂️ another video of variational autoencoders, please
@bharathpreetham3105 жыл бұрын
can i know which mic u r using for making these videos???
@Victor-he5hy5 жыл бұрын
Very good video. Impressive
@MLDawn3 жыл бұрын
really really good video. Could you tell me something about the Gaussian prior on the bottleneck. 1) Do we learn the parameters of this Gaussian? 2) Is it only 1 Gaussian, or as you said, it is really a mixture of Gaussians (mathematically speaking)? Thanks
@maxjt115 жыл бұрын
Thanks man, great vid
@avidreader1003 жыл бұрын
Good explanation. Perhaps after creating a blurry image, one can use another application for sharpening the features.
@sebastiaanvanbuisman17044 жыл бұрын
great vid! i appreciate this a lot
@pavanms69244 жыл бұрын
can you please make a video on probabilistic U nets
@user-ju5uv2lk3e Жыл бұрын
Thanks for this video :)
@CodeEmporium Жыл бұрын
You are very welcome. Thank you for the thoughtful words
@baothach92594 жыл бұрын
Amazing tutorial
@CodeEmporium4 жыл бұрын
Thanks for watching!
@china_tours2 жыл бұрын
Great explanation, but please make the slides (ppt) public.. thank you
@amr68593 жыл бұрын
Take home message: Variational Autoencoders can generate new data.
@threeMetreJim5 жыл бұрын
What happens if you know how many vector elements are needed to accurately define what you want to reproduce, and then add a few more that aren't defined by the input image, but represent the class of the desired output. Will this force all of the vector elements into their own pool? So you can pick any random vector and add to it the representation of the class, to only pick from that pool. This strategy works for the 'image painting' network by Andrej Karpathy, and it's how I switched between images for a different kind of image tweening. I still wonder exactly what kind of network the 'image painter' actually is. I'm guessing that the same technique should also work for a generative auto encoder. I came up with the idea based on how a person learns something; you get more than one input - I.e a picture and description, that goes in (both presented at the input, rather than one at the input and the other at the output), and is then mapped to just the wanted description.
@vinayreddy86834 жыл бұрын
Please make a video on Transformer and BERT architectures
@CodeEmporium4 жыл бұрын
Gonna talk about that in my next video in a few days. Stay tuned :)
@vinayreddy86834 жыл бұрын
@@CodeEmporium thanks for the reply AJ. I was really surprised the way you changed your accent in such a short span of time, at one point I couldn't believe the fact that you're Thamil. Your content is amazing, I don't want to be selfish here, but I'd be happy if you can do more video's on NLP.
@Wabadoum5 жыл бұрын
Nice video! I have two questions: You show that the pool of the VAE is continuous, but it also shows blanks, eg. all space isnt covered by the numbers. What does a sampling from these regions gives? Is it still close to a number? Second question, does the size of the pool affect the quality of an image generated? Like giving more space to the VAE allows it to learn with less constrains? Thanks!
@haralambiepapastathopoulos78765 жыл бұрын
Could you make a video for adaptive instance normalization (AdaIN)? It would be very useful, nobody on KZbin did this before
@thecurious9262 жыл бұрын
wait, then how is reconstruction done using an autoencoder?
@fatemerezaei6898 Жыл бұрын
Amazing!
@tilu3917 ай бұрын
if u r just taking a vector from pool , then isn't it just mapping of image->vector->image
@rishidixit7939Ай бұрын
How does the VAE enclose the distribution pools in a defined region ? This concept and its intuition is unclear
@hochmuch5 жыл бұрын
Спасибо, твои видео веселые и очень полезные | Thank you, your videos are funny and so useful
@СергейКривенко-р6я4 жыл бұрын
Чувак, веселый это fun, а funny это смешной, это два совсем разных слова.
@anandsharma163 ай бұрын
the dog bark messed me up man
@krishnagarg68704 жыл бұрын
Nice Video
@thebrothershow58263 жыл бұрын
You are amazing
@nikitasinha8181 Жыл бұрын
Thank you so much
@CodeEmporium Жыл бұрын
Thank you for watching :)
@XecutionStyle4 жыл бұрын
$@#$ I thought there was a dog in the house
@artinbogdanov72294 жыл бұрын
Thanks!
@DocTheDirector5 жыл бұрын
Need the mathy version of this video the explanation of the latent loss is awful
@lihuil31152 жыл бұрын
very good.
@HimanshuSingh-ej2tc2 жыл бұрын
Make more mathematical detailed video
@CodeEmporium2 жыл бұрын
Coming soon :)
@zarlishattique41672 жыл бұрын
Where is coding it's not explained till you practice it.. 🥺
@juanpabloaguilar49824 жыл бұрын
I think is a very big mistake to say that auto encoders cannot used to generate data. That is very wrong and there are multiple applications which use images as inputs to generate images like for example how the baby from two parents will look like.
@rockapedra11302 жыл бұрын
Was going well but ended without explaining ☹️
@fazilokuyanus33965 жыл бұрын
you are great!
@CodeEmporium5 жыл бұрын
You are too kind:)
@unnikrishnanms34315 жыл бұрын
@@CodeEmporium could you give a code for GAN?...
@tıbhendese8 ай бұрын
Understood nothing about how this model works. Oversimplifications and storytelling makes it unpaired with the how the real thing work. Now I know : AE is reducing the input data into a smaller vector, VAE can generate blurry image. What I don't know : What is happening to input data and the dataset, what this pool intuition is for?
@CharlieYoutubing5 жыл бұрын
Thanks
@CodeEmporium5 жыл бұрын
Anytime :)
@leosmi15 жыл бұрын
Thnx
@Flinsyflonsy4 жыл бұрын
10/10 because doggos.
@alexbarnadas4 жыл бұрын
My cat makes very different noises x'D
@shivkrishnajaiswal8394 Жыл бұрын
Interesting
@programmingrush10 ай бұрын
Nice
@l.gunasekar8323 жыл бұрын
Good
@pseudospectral2 Жыл бұрын
I was here
@thejswaroop52303 жыл бұрын
ur neural network has a bias over dogs to cats lol
@SolathPrime2 жыл бұрын
Kieet
@Lucas7Martins5 жыл бұрын
Doggos!!!!!
@vladvladislav43355 жыл бұрын
Well, that's actually a totally wrong conceptual explaination of a VAE. Moreover, in the video you didn't name some absolutely cruicial points about VAEs, that one would expect to hear. Moremoremoreover, there are plenty of statistical and mathematical things, that are not obvious at all and need to be explained when speaking about VAEs. So this is indeed an explaination, but quite a bad one I could be more specific if anybody is interested, so let's start some discussion in the comments :D
@jg91935 жыл бұрын
I'm interested. Be more specific.
@est99494 жыл бұрын
Well, please explain more.
@bidishadas8425 жыл бұрын
Kahi bhi nahi jaate. Hamesha call karke puchte hai drop location kya hai or fir cancel karte !