Combinations with Repetition | Combinatorics

  Рет қаралды 33,368

Wrath of Math

Wrath of Math

Күн бұрын

Пікірлер: 42
@ophelialavey
@ophelialavey 2 жыл бұрын
Best explanation of this I've found online!
@WrathofMath
@WrathofMath 2 жыл бұрын
Awesome! Thanks for watching!
@Bedoroski
@Bedoroski Жыл бұрын
An intuitive lecture that cleared up my mind. Can you make a video about the "finite objects selection" that was briefly mentioned at the end?
@WrathofMath
@WrathofMath Жыл бұрын
Thanks for watching! I'll see what I can do about the finite selection video!
@punditgi
@punditgi 4 жыл бұрын
Must master the fundamentals! Thanks for the lesson.
@WrathofMath
@WrathofMath 4 жыл бұрын
Absolutely, competency in counting problems can be very powerful! Thanks for watching!
@MarcPhilipGoodman
@MarcPhilipGoodman 8 күн бұрын
Everyone teaches the answer like this, but no one teaches the logic or idea of why and how someone up with the bars concept as a viable solution. So while I know how to answer it, I still wouldn’t be any smarter in understanding the process of coming up with the solution
@So_aham
@So_aham 7 ай бұрын
you can see this problem like this - there are k (boxes to keep things) and n-1 sticks. So here we have to arrange k + n-1 objects that will be = (k+n-1)! / (n-1)!*k! ...(n-1 and k are identical objects so we are dividing by their factorial here) = (k+n-1) C (n-1) = (k+n-1) C (k)
@孫傅康
@孫傅康 6 ай бұрын
I finally understand it. Thanks!
@elaborated-eggs
@elaborated-eggs 10 ай бұрын
I still do not understand why this approach works? How can I come to this conclusion on my own without being previously told the equation
@MarcPhilipGoodman
@MarcPhilipGoodman 8 күн бұрын
I know right! I don’t like being taught “this is how to solve it” I wanna understand how someone came up with the idea🧐
@bartoszpominski9304
@bartoszpominski9304 Жыл бұрын
Thanks that was really helpful.
@WrathofMath
@WrathofMath Жыл бұрын
Awesome, thanks for watching!
@harrisondong5405
@harrisondong5405 2 жыл бұрын
Good explanation! thanks guy. Is there another course to explain how to count the number for fixed number of a1/a2/.../an?
@MrDeadlyCrow
@MrDeadlyCrow 3 жыл бұрын
Wow, that's just amazing! Many thanks! : )
@WrathofMath
@WrathofMath 3 жыл бұрын
My pleasure, glad you liked it!
@charan_75
@charan_75 3 жыл бұрын
What is the difference between permutation with repetition and combination with repetition?
@WrathofMath
@WrathofMath 3 жыл бұрын
Thanks for watching and the difference is that permutations are concerned with order, combinations are not. So consider selecting 4 letters, with repetition allowed. Then AABC and ABAC are two different permutations with repetition. However, they are the same combinations because they consist of the same letters. AABC has 2 As, 1 B and 1 C, and so does ABAC. Whereas ADFF and ADFG are different permutations and different combinations. Does that help?
@Mu_utd
@Mu_utd 3 жыл бұрын
Very wonderful What about when selecting object in a group with twins and triplets which need not to be separated. Thanks
@adityaadit2004
@adityaadit2004 3 жыл бұрын
Thank you Peter Griffin
@boeriucosmin4213
@boeriucosmin4213 2 жыл бұрын
is there an explanation for the problem at the end, where the infinite number of each element is changet to a fixed k number ?
@bodaciouschad
@bodaciouschad 10 ай бұрын
Wasn't this the process for *replacement* rather than repetition? Having infinitely many of each variable is just replacement. Repetition is allowing their to be a finite number, even those greater than 1, of a given "option" within the pool, i.e. [0,0,1,1,1,2,4] is repetition whereas your demonstration was predicated on replacement, i.e. the pool of options [1,2,3,4] each being replaced with each selection and having equal chances to be picked for future selections. They seem to be fundamentally different things.
@harshkumar7686
@harshkumar7686 10 ай бұрын
वाह! क्या बात है।
@DanielSColao
@DanielSColao 3 жыл бұрын
Awesome video, keep it up!
@WrathofMath
@WrathofMath 3 жыл бұрын
Thanks Daniel, I will! My next video will be a documentary, I hope you'll check it out!
@nicchagall6075
@nicchagall6075 2 жыл бұрын
Superb
@yingkaisong4258
@yingkaisong4258 Жыл бұрын
Not sure why some people said this was the best explanation. Clearly, it skipped explaining why it is picking n-1 out of k+n-1. The video has no indication that these "bars" may fit in the original k spots. It only shows that these bars may fit in between these k spots, and somehow you have k+n-1 in total. A better visualization would be draw k+n-1 spots and give examples to show how these bars can be in these k+n-1 spots. The following is definitely a better and convincing explanation: kzbin.info/www/bejne/d5eWqHugmc2NbLs. Note: this is not about whether this video is clear for smart enough people, but about clear teaching.
@tangisiva4093
@tangisiva4093 Жыл бұрын
thank you sir
@WrathofMath
@WrathofMath Жыл бұрын
Glad to help!
@sziluv
@sziluv 4 жыл бұрын
Thanks 😊👍
@WrathofMath
@WrathofMath 4 жыл бұрын
My pleasure!
@krasimirronkov17
@krasimirronkov17 3 жыл бұрын
Why do we have n-1 bars didnt understand that idea
@harrisondong5405
@harrisondong5405 2 жыл бұрын
each bar represents one object except for a(n) because a(n) is the last one and no needed to stop.
@guy_you_can_trust
@guy_you_can_trust 2 жыл бұрын
imagine multiple compartments for storing money and k copies of each bill, theres only enough space to accommodate having 3 bills per compartment - the remaining 'room' in a compartment can accommodate k-1 bills after choosing a bill i.e. if n=4 and k bills = 3 (imagine those bills being $1, $5 and $20) then placing a $1 bill in its 'corresponding' box will leave k-1 bills of space left (think vertical height from where it's placed) this means we initially have n+k-1 'spaces' to work with
@eliotvarda
@eliotvarda 6 ай бұрын
He said, WE COUNT BARS, that n-1 originates not from a(n), but from first element a(1), if your combination is just placing a(1) on every place, than you don't need any bars, for that reason, i think, ...
@HoudaImeneMECHKAK
@HoudaImeneMECHKAK 10 ай бұрын
Thank you sir 🫡😭
@WrathofMath
@WrathofMath 10 ай бұрын
Glad to help!
@RelixAMV
@RelixAMV Жыл бұрын
Ok so we know how to work permutation and combinations but how do we distinguish which we're supposed to find from just the question? Cuz I could not tell the difference between some of these questions with the ones u did on permutation
@jadejaprem5692
@jadejaprem5692 Жыл бұрын
When order matter you should use permutations and combinations when order does not matter
@jadejaprem5692
@jadejaprem5692 Жыл бұрын
Would suggest you to go through discrete maths by rosenreferrence book
@omarluiscamposnaranjo953
@omarluiscamposnaranjo953 2 жыл бұрын
brutal!! thnks 🤗
@HongBui-rf2te
@HongBui-rf2te 3 жыл бұрын
the video image is too poor, you need to fix it more
Combinations with Repetitions in Discrete Math
22:46
Intermation
Рет қаралды 14 М.
Permutations and Combinations Tutorial
17:41
The Organic Chemistry Tutor
Рет қаралды 3,4 МЛН
Муж внезапно вернулся домой @Oscar_elteacher
00:43
История одного вокалиста
Рет қаралды 7 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 40 МЛН
Why no RONALDO?! 🤔⚽️
00:28
Celine Dept
Рет қаралды 98 МЛН
Permutations: how do we account for repetitions?
12:55
Eddie Woo
Рет қаралды 80 М.
Discrete Math II - 6.5.1 Combinations with Repetition
19:06
Kimberly Brehm
Рет қаралды 21 М.
Apparently Short Division is a Thing
12:52
Wrath of Math
Рет қаралды 23 М.
Euler's Proof of the Infinitude of Primes
17:56
Wrath of Math
Рет қаралды 8 М.
Theoretical Probability, Permutations and Combinations
15:52
Professor Dave Explains
Рет қаралды 74 М.
Combinations with Repetition (Balls and Boxes)
8:49
SWARTWOODPREP
Рет қаралды 7 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4,1 МЛН
COMBINATIONS with REPETITION - DISCRETE MATHEMATICS
13:35
TrevTutor
Рет қаралды 285 М.
Combinations with Repetitions
7:07
Math All Day with Dr. George Sweeney
Рет қаралды 2,7 М.
Муж внезапно вернулся домой @Oscar_elteacher
00:43
История одного вокалиста
Рет қаралды 7 МЛН