Give this video 1000 likes then I will start a 7 days Live NLP community Sessions for everyone. Happy Learning!!
@vinayakdumbre28282 жыл бұрын
Wow,its should be end to end,not just basic rnn,it would be awesome
@photogenicglint2392 жыл бұрын
Hi Krish , Collab with Sumit Mittal ( Trendytech) for big data course. He teaches in depth but offer course at high price.once he Collab with ineuron so that he can offer course in affordable price.
@vivekpandey84382 жыл бұрын
thanks please start NLP common file and Also Upload statistics in 1 Videos
@aryansheth73692 жыл бұрын
666
@faraazmohammed36932 жыл бұрын
992..close
@mainlykanchan87402 жыл бұрын
Sir data analysis in sql with advance queries for portfolio project. Full length video, like this video please 🙏🏼
@krishan973913 күн бұрын
I have to say, this actual teachss you how to think for EDA so you actually learn something.
@najiibrashiidabdi50142 жыл бұрын
My name is najiib and i from country called somaliland which is in somalia really i enjoyed this project i will hope you will upload more topics about machine learn thank you krish naik najiib from somaliland
@mayowaolowolaiyemo16062 жыл бұрын
Thanks for this teaching Krish, your approach is simple and easy.
@thedinaaesh3 ай бұрын
01:30:08 - Based on my experience, when we encounter null values, we typically reach out to the upstream data source to verify if there are any missing values. In most data science projects, data is provided by a data engineering team, so collaboration with them is essential. If they confirm that the data indeed contains null values after their validation, we can then handle those nulls accordingly.
@VyomKumaraes2 жыл бұрын
47:50 this is also working df[df['Aggregate rating'] == 0]['Country'].unique()
@rishi43075 ай бұрын
# Function to convert duration to minutes def convert_to_minutes(Duration): hours = 0 minutes = 0 Duration = str(Duration) # Ensure the duration is treated as a string if 'h' in Duration: hours = int(Duration.split('h')[0]) Duration = Duration.split('h')[1] if 'm' in Duration: minutes = int(Duration.split('m')[0]) return hours * 60 + minutes # Apply the function to the 'Duration' column final_df['duration_minutes'] = final_df['Duration'].apply(convert_to_minutes) final_df.head()
@adityagoyal65273 ай бұрын
At 47:54 the same can be done using final_df.Country[final_df['Aggregate rating']==0].value_counts()
@shashwatgoswami69942 жыл бұрын
Very informative video. I would like to add a point regarding the UTF-8 code error i.e if you save the excel sheet as CSV UTF-8 comma delimited format then there is no need to enter the codes.
@loserianlaizer49456 ай бұрын
thanks Krish..it has been an enlighten session.. Have watched the entire 2.48hours session. Be blessed
@aishwaryapattnaik30822 жыл бұрын
Label Encoder should be used only for target labels i.e y and not on input feature. It's mentioned in sklearn Label Encoder page clearly. For nominal & ordinal variables, we should use One Hot Encoder and Ordinal Encoder respectively. These all should be done within a pipeline and column transformer for hassle free coding preferably
@rajkundra50052 жыл бұрын
yes,same doubt
@prayashdash18152 жыл бұрын
@@rajkundra5005 bhai link dede
@NikhilSingh-gv5ne2 жыл бұрын
Mind-blowing explanation bro keep it up
@Agros922 жыл бұрын
Thanks Krish, you are the best!. A question related to the "second session" about the Product_Category_(1,2,3), I understand that you explain that in case of NaN values in categorical feature you can use the Mode to replace the NaN values. But for this particular case I think that is important to understand the data before doing that, since Product_Category_(1,2,3) indicated that the products can be part of multiples categories. For example a movie being categorized as "Drama, Action, Suspense". So for this case maybe it would be better to try to use dummies for Product_Category_(1,2,3) and then try to sum it, it would be complex to implement it but you would get the real information about your data, since you can get the info about Product_1 being a (0,1,0,0,1,0,1) if that product has 3 categories. Cheers!
@photogenicglint2392 жыл бұрын
Hi Krish , Collab with Sumit Mittal ( Trendytech) for big data course. He teaches in depth but offer course at high price.once he Collab with ineuron so that he can offer course in affordable price.
@celebrationsthecelebschoic5752 жыл бұрын
When you try to get top 3 countries percentage in pie chart, it calculates for only those three countries. But calculating over all the transactions will make sence. Percent of transactions from India means, among all the transactions what is India's percentage. But here in hour case, it allows only India, USA and UK.
@dikshantakumarbharadwaj60522 жыл бұрын
God-Father of Data-Science
@raosajid6578 Жыл бұрын
great work sir subscription done from my side
@shivamkumar-rn2ve2 жыл бұрын
There are two types of variable nominal and ordinal In ordinal you can use label encoding but you can't use label encoding for nominal variable you have to use one hot encoding if you will use label encoding for nominal then machine learning model will treat nominal as ordinal so you can't use
@aishwaryapattnaik30822 жыл бұрын
Label Encoder should be used only for target labels i.e y and not on input feature. It's mentioned in sklearn Label Encoder page clearly. For nominal & ordinal variables, we should use One Hot Encoder and Ordinal Encoder respectively.
@shivamkumar-rn2ve2 жыл бұрын
yeah you are right about label encoder you can only use it for target variable
@learner80532 жыл бұрын
Please post EDA video in your hindi channel also
@arbiiimeshАй бұрын
Hi, Sir I'm an aspiring Data Analyst enthusiast and IT assistant.. Now become a member of your channel.. 🙏 please guide me what needs to be learnt first for a data analyst or data science career.. Hope you will reply Best Regards
@HiralPrajapati-j5x11 ай бұрын
Query for flight price prediction dataset for duration column df['Duration_hour']=df['Duration'].str.split('h').str[0].str.split('m').str[0] df['Duration_hour']= df['Duration_hour'].astype(int) It's work for me.
@yogeshmane99732 жыл бұрын
you are doing excellent work sir
@praveentanikella40782 жыл бұрын
Nice one. One doubt the main work of data analyst is only finding insights and done. The ML part no needed?? Is that ML job work is for Data scientist.
@yumatinikhar785810 ай бұрын
Thanks. Its really helpful
@swapnilpalsapure97818 ай бұрын
Really helpful Sir..
@kar21942 жыл бұрын
Hi Krish, do you have videos of data cleaning, EDA, and feature engineering for unsupervised ML? (For both Principal Component Analysis (PCA, CA, MCA... etc) and Clustering techniques include partitioning, hierarchical, DBSCAN etc). By the way, are there differences in cleaning cleaning and feature engineering between predictive regression and inferential regression? Thank you!
@knowledgedoctor38492 жыл бұрын
Great Sir❣️
@ramdasprajapati78842 жыл бұрын
Find the top 10 cuisines(food) item for this for zomato dataset is this code correct final_df.Cuisines[:10].value_counts()
@vijayramapple2 жыл бұрын
53:15 / 2:48:54
@ninadkalanke8880 Жыл бұрын
Sir plz turn off your notification sound!
@SACHINKUMAR-px8kq2 жыл бұрын
thank you so much sir
@adamassrkfan4 ай бұрын
2:36:35
@SachinModi92 жыл бұрын
How to find top 10 Cuisines final_df= final_df.replace(np.nan,'Dummy') --- Convert NaN to Dummy one_string = ','.join(final_df['Cuisines'].tolist()) -- Convert Cuisines columns to list and join one_list = one_string.replace(" ","").split(',') -- replace blank spaces by comma pd.value_counts(one_list)[:10] --- top 10 values
@MujahidDeen-x6o4 ай бұрын
Make another video in data explratoery, eda
@vikasvs575511 ай бұрын
super
@Rijuldhungana Жыл бұрын
data[data['Aggregate rating']==0]['Country'].value_counts() , This also works
@pratik56922 жыл бұрын
feature engineering in one video
@ayushsharma56402 жыл бұрын
Thanks sir
@yasmeenkarachiwala96124 ай бұрын
Hello Sir! Thank you. @43.00 why the observation of the maximum number of ratings is from 2.5 - 3.4?
@GuruprasadP-s6s8 ай бұрын
We could have used product ID to fill product category column
@Amansharma-he9qg2 жыл бұрын
first comment sir how to make sql project for portfolio please reply
@mainlykanchan87402 жыл бұрын
Yes..
@praveentanikella40782 жыл бұрын
For data analyst work the data set is available from any data base or in form of excel or CSV ??
@siddhantgaurav70532 жыл бұрын
feature engineering in 1 video
@narayanbabubharali98462 жыл бұрын
Nice
@usmanriaz61572 жыл бұрын
Sir, Airline is a nominal feature and in you said that in case of nominal feature, we can do OHE or Mean encoding. Why are you using LabelEncoding ?
@RajaSirOpsc2 жыл бұрын
where is the blackfriday dataset
@sonukumar-yp6vs2 жыл бұрын
11:00
@dibyanikshetry3775 Жыл бұрын
I couldn't do the part where we have to show the country names that has given 0 rating It's not showing any output
@aakashpal07772 жыл бұрын
Hi
@sangramshinde92622 жыл бұрын
I dont understand replacing na values of product catogry_2 and product catogry_3 with mode we just manipulated the data
@jagadeeshct70832 жыл бұрын
please share blackfriday dataset ..there is no blackfriday dataset in the given link.
@kirankumar99342 жыл бұрын
Even I'm not able to find black_friday dataset
@bestofmusicc__9 ай бұрын
Hi, why did you combined the country code ?? Please explain this.
@A3dull9 ай бұрын
The first dataset only includes the country code, while the second dataset contains both the country code and the country name. When merging them together, the country name column was populated using the information from the second dataset.
@bestofmusicc__9 ай бұрын
@@A3dull yeah thanks man👍💪
@jececdept.9548 Жыл бұрын
is this a regression problem?
@thedinaaesh3 ай бұрын
01:41:40 - probably few men are buying on behalf of the women 😂
@garimabatra2658Ай бұрын
how to download dataset? pls help
@elahehkhazaei48559 күн бұрын
Please give us source of you data
@anonymous_12155 Жыл бұрын
I am getting Nan error when I try to replace F with 0 and M with 1 in Black Firday EDA ..How to resolve it?
@pavankumarjammala9262 Жыл бұрын
Once before running that particular code run all cells at a time you will get it
@vijaysharma76772 жыл бұрын
please explain how one can find the location of CSV or get the jupyter NB to read the file location automatically inside a folder I am getting an error while reading the file
@ManishKumar-qh2ql2 жыл бұрын
open with path location and instead of \ use \\
@madhupincha78982 жыл бұрын
pwd()
@Agros922 жыл бұрын
You can put the csv file on the same folder of the JupyterNB file. To read it it would be - pd.read_csv("data_name.csv") -. If you put the data in another folder and that folder is located in the same folder of the JupyterNB file you can do - pd.read_csv("Folder_Name\\data_name.csv") -
@ShikhaJain-u7y4 ай бұрын
I am not finding train.csv file for the second part of video in your github
@himadrikar46643 ай бұрын
The link to the data set is given in the first line of the Python notebook. Download the dataset from that link.
@srirama82752 жыл бұрын
What are Prequesties to learn this sir?
@krishnaik062 жыл бұрын
python
@srirama82752 жыл бұрын
@@krishnaik06 Thank you sir
@abhisheksinghmahra4462 жыл бұрын
sir how to deal with utf-8 encoding
@Srushti_Mane9 ай бұрын
use latin=1
@azamiqbal8792 Жыл бұрын
Can you share file for practice
@tanumoyhazra6055 Жыл бұрын
from where i can get your codes for this video ?
@vanshsrivastava65512 жыл бұрын
Is this enough to mention in resume
@prafulaggarwal968311 ай бұрын
where to find the black friday dataset?
@swetamishra358010 ай бұрын
Did you find it?
@himadrikar46643 ай бұрын
The link to the data set is given in the first line of the Python notebook. Download the dataset from that link.
@oseikofi4953 Жыл бұрын
I can't find the black friday dataset on your github page
@himadrikar46643 ай бұрын
The link to the data set is given in the first line of the Python notebook. Download the dataset from that link.
@moghalkarishma2378 Жыл бұрын
Is necessary to hanle missing values in data analysis?
@_k_kd11 ай бұрын
yes.
@RolandElvira-l4y2 ай бұрын
Wilson Larry Moore Richard Martin Daniel
@Pyrometin7 ай бұрын
Guys how to find top 10 Cuisines in data ? help me
@Pyrometin7 ай бұрын
I got it, use this code. final["Cuisines"].value_counts()[:10]
@Abhi-qn4xv2 жыл бұрын
Can anyone explain when do we use onehotencoding and when do we use Labelencoder(ordinal encoding) since they both do the same job but in a different way, onehot creates multipe new feature while label do all the work in one feature. Like in this case wouldn't be better to use labelencoder to do encoding in Additional info feature since onhot will create multiple new sparse eatures which might increase he workload of the mode or am i missing some point here?
@sanjaysanjay8622 жыл бұрын
One-hor encoding is used only for independent variables (feature) but label encoder is used for target variable.And they both won't do the same task one-hot encoding gives seperate columns for each catagory.As of my understanding.If wrong reply
@Abhi-qn4xv2 жыл бұрын
@@sanjaysanjay862 well u r correct. I did some reading in this topic and found out that although label encoder can be used on independent variables too, it's usually not used. On independent variable, one hot is better than label encoder as label encoder might confuse the model into learning that feature as a rank. So instead of learning 1 as a numerical representation of a word, model will think 1 as a rank. Hope u understand my point
@sanjaysanjay8622 жыл бұрын
@@Abhi-qn4xv Yes, I agree that
@adeshinaibrahim96412 жыл бұрын
In simple terms use one-hot encoding when you have limited number of categories but otherwise dont.
@muhammadzakiahmad80692 жыл бұрын
Zomato Dataset Assignment: (With respect to value counts) cus_values = final_df["Cuisines"].value_counts().values cus_labels = final_df["Cuisines"].value_counts().index plt.pie(cus_values[:10],labels=cus_labels[:10],autopct='%1.2f%%') (With respect to Aggregate rating) final_df[['Aggregate rating','Cuisines']].groupby(['Aggregate rating','Cuisines']).size().reset_index().tail(10) Please correct me if i did it wrong.
@FaizanSharif-k8g3 ай бұрын
final_df= final_df.replace(np.nan,'Dummy') --- Convert NaN to Dummy one_string = ','.join(final_df['Cuisines'].tolist()) -- Convert Cuisines columns to list and join one_list = one_string.replace(" ","").split(',') -- replace blank spaces by comma pd.value_counts(one_list)[:10] --- top 10 values
@PradeepSahu-kh8vr Жыл бұрын
im not getting zomato csv file....can anyone help????
@pavankumarjammala9262 Жыл бұрын
Yeah !! bro same prblm from my side also
@ashishsaha69042 жыл бұрын
why latin-1 ?
@naveenojha8377 Жыл бұрын
Hindi m hota to jarur kuch Sikh pate 😓😓😓😓
@jackymarcel41082 ай бұрын
Lewis Barbara Davis Brenda Brown Michael
@prashantgupta21722 жыл бұрын
Hindi me vedio bana digite aap
@NooBGamer-fd4ln4 ай бұрын
he said fucked instead of fixed 1:51:00 😆
@jedits7835 Жыл бұрын
after do doinh this project can we add this resume
@MLMinute10 ай бұрын
Everything is perfect except the pronunciation. Haha
@UniversalFacts-unknown2 жыл бұрын
How to give just zomato.csv in df line instead of giving entire path