Complete Exploratory Data Analysis And Feature Engineering In 3 Hours| Krish Naik

  Рет қаралды 204,538

Krish Naik

Krish Naik

Күн бұрын

Пікірлер: 121
@krishnaik06
@krishnaik06 2 жыл бұрын
Give this video 1000 likes then I will start a 7 days Live NLP community Sessions for everyone. Happy Learning!!
@vinayakdumbre2828
@vinayakdumbre2828 2 жыл бұрын
Wow,its should be end to end,not just basic rnn,it would be awesome
@photogenicglint239
@photogenicglint239 2 жыл бұрын
Hi Krish , Collab with Sumit Mittal ( Trendytech) for big data course. He teaches in depth but offer course at high price.once he Collab with ineuron so that he can offer course in affordable price.
@vivekpandey8438
@vivekpandey8438 2 жыл бұрын
thanks please start NLP common file and Also Upload statistics in 1 Videos
@aryansheth7369
@aryansheth7369 2 жыл бұрын
666
@faraazmohammed3693
@faraazmohammed3693 2 жыл бұрын
992..close
@mainlykanchan8740
@mainlykanchan8740 2 жыл бұрын
Sir data analysis in sql with advance queries for portfolio project. Full length video, like this video please 🙏🏼
@krishan9739
@krishan9739 13 күн бұрын
I have to say, this actual teachss you how to think for EDA so you actually learn something.
@najiibrashiidabdi5014
@najiibrashiidabdi5014 2 жыл бұрын
My name is najiib and i from country called somaliland which is in somalia really i enjoyed this project i will hope you will upload more topics about machine learn thank you krish naik najiib from somaliland
@mayowaolowolaiyemo1606
@mayowaolowolaiyemo1606 2 жыл бұрын
Thanks for this teaching Krish, your approach is simple and easy.
@thedinaaesh
@thedinaaesh 3 ай бұрын
01:30:08 - Based on my experience, when we encounter null values, we typically reach out to the upstream data source to verify if there are any missing values. In most data science projects, data is provided by a data engineering team, so collaboration with them is essential. If they confirm that the data indeed contains null values after their validation, we can then handle those nulls accordingly.
@VyomKumaraes
@VyomKumaraes 2 жыл бұрын
47:50 this is also working df[df['Aggregate rating'] == 0]['Country'].unique()
@rishi4307
@rishi4307 5 ай бұрын
# Function to convert duration to minutes def convert_to_minutes(Duration): hours = 0 minutes = 0 Duration = str(Duration) # Ensure the duration is treated as a string if 'h' in Duration: hours = int(Duration.split('h')[0]) Duration = Duration.split('h')[1] if 'm' in Duration: minutes = int(Duration.split('m')[0]) return hours * 60 + minutes # Apply the function to the 'Duration' column final_df['duration_minutes'] = final_df['Duration'].apply(convert_to_minutes) final_df.head()
@adityagoyal6527
@adityagoyal6527 3 ай бұрын
At 47:54 the same can be done using final_df.Country[final_df['Aggregate rating']==0].value_counts()
@shashwatgoswami6994
@shashwatgoswami6994 2 жыл бұрын
Very informative video. I would like to add a point regarding the UTF-8 code error i.e if you save the excel sheet as CSV UTF-8 comma delimited format then there is no need to enter the codes.
@loserianlaizer4945
@loserianlaizer4945 6 ай бұрын
thanks Krish..it has been an enlighten session.. Have watched the entire 2.48hours session. Be blessed
@aishwaryapattnaik3082
@aishwaryapattnaik3082 2 жыл бұрын
Label Encoder should be used only for target labels i.e y and not on input feature. It's mentioned in sklearn Label Encoder page clearly. For nominal & ordinal variables, we should use One Hot Encoder and Ordinal Encoder respectively. These all should be done within a pipeline and column transformer for hassle free coding preferably
@rajkundra5005
@rajkundra5005 2 жыл бұрын
yes,same doubt
@prayashdash1815
@prayashdash1815 2 жыл бұрын
@@rajkundra5005 bhai link dede
@NikhilSingh-gv5ne
@NikhilSingh-gv5ne 2 жыл бұрын
Mind-blowing explanation bro keep it up
@Agros92
@Agros92 2 жыл бұрын
Thanks Krish, you are the best!. A question related to the "second session" about the Product_Category_(1,2,3), I understand that you explain that in case of NaN values in categorical feature you can use the Mode to replace the NaN values. But for this particular case I think that is important to understand the data before doing that, since Product_Category_(1,2,3) indicated that the products can be part of multiples categories. For example a movie being categorized as "Drama, Action, Suspense". So for this case maybe it would be better to try to use dummies for Product_Category_(1,2,3) and then try to sum it, it would be complex to implement it but you would get the real information about your data, since you can get the info about Product_1 being a (0,1,0,0,1,0,1) if that product has 3 categories. Cheers!
@photogenicglint239
@photogenicglint239 2 жыл бұрын
Hi Krish , Collab with Sumit Mittal ( Trendytech) for big data course. He teaches in depth but offer course at high price.once he Collab with ineuron so that he can offer course in affordable price.
@celebrationsthecelebschoic575
@celebrationsthecelebschoic575 2 жыл бұрын
When you try to get top 3 countries percentage in pie chart, it calculates for only those three countries. But calculating over all the transactions will make sence. Percent of transactions from India means, among all the transactions what is India's percentage. But here in hour case, it allows only India, USA and UK.
@dikshantakumarbharadwaj6052
@dikshantakumarbharadwaj6052 2 жыл бұрын
God-Father of Data-Science
@raosajid6578
@raosajid6578 Жыл бұрын
great work sir subscription done from my side
@shivamkumar-rn2ve
@shivamkumar-rn2ve 2 жыл бұрын
There are two types of variable nominal and ordinal In ordinal you can use label encoding but you can't use label encoding for nominal variable you have to use one hot encoding if you will use label encoding for nominal then machine learning model will treat nominal as ordinal so you can't use
@aishwaryapattnaik3082
@aishwaryapattnaik3082 2 жыл бұрын
Label Encoder should be used only for target labels i.e y and not on input feature. It's mentioned in sklearn Label Encoder page clearly. For nominal & ordinal variables, we should use One Hot Encoder and Ordinal Encoder respectively.
@shivamkumar-rn2ve
@shivamkumar-rn2ve 2 жыл бұрын
yeah you are right about label encoder you can only use it for target variable
@learner8053
@learner8053 2 жыл бұрын
Please post EDA video in your hindi channel also
@arbiiimesh
@arbiiimesh Ай бұрын
Hi, Sir I'm an aspiring Data Analyst enthusiast and IT assistant.. Now become a member of your channel.. 🙏 please guide me what needs to be learnt first for a data analyst or data science career.. Hope you will reply Best Regards
@HiralPrajapati-j5x
@HiralPrajapati-j5x 11 ай бұрын
Query for flight price prediction dataset for duration column df['Duration_hour']=df['Duration'].str.split('h').str[0].str.split('m').str[0] df['Duration_hour']= df['Duration_hour'].astype(int) It's work for me.
@yogeshmane9973
@yogeshmane9973 2 жыл бұрын
you are doing excellent work sir
@praveentanikella4078
@praveentanikella4078 2 жыл бұрын
Nice one. One doubt the main work of data analyst is only finding insights and done. The ML part no needed?? Is that ML job work is for Data scientist.
@yumatinikhar7858
@yumatinikhar7858 10 ай бұрын
Thanks. Its really helpful
@swapnilpalsapure9781
@swapnilpalsapure9781 8 ай бұрын
Really helpful Sir..
@kar2194
@kar2194 2 жыл бұрын
Hi Krish, do you have videos of data cleaning, EDA, and feature engineering for unsupervised ML? (For both Principal Component Analysis (PCA, CA, MCA... etc) and Clustering techniques include partitioning, hierarchical, DBSCAN etc). By the way, are there differences in cleaning cleaning and feature engineering between predictive regression and inferential regression? Thank you!
@knowledgedoctor3849
@knowledgedoctor3849 2 жыл бұрын
Great Sir❣️
@ramdasprajapati7884
@ramdasprajapati7884 2 жыл бұрын
Find the top 10 cuisines(food) item for this for zomato dataset is this code correct final_df.Cuisines[:10].value_counts()
@vijayramapple
@vijayramapple 2 жыл бұрын
53:15 / 2:48:54
@ninadkalanke8880
@ninadkalanke8880 Жыл бұрын
Sir plz turn off your notification sound!
@SACHINKUMAR-px8kq
@SACHINKUMAR-px8kq 2 жыл бұрын
thank you so much sir
@adamassrkfan
@adamassrkfan 4 ай бұрын
2:36:35
@SachinModi9
@SachinModi9 2 жыл бұрын
How to find top 10 Cuisines final_df= final_df.replace(np.nan,'Dummy') --- Convert NaN to Dummy one_string = ','.join(final_df['Cuisines'].tolist()) -- Convert Cuisines columns to list and join one_list = one_string.replace(" ","").split(',') -- replace blank spaces by comma pd.value_counts(one_list)[:10] --- top 10 values
@MujahidDeen-x6o
@MujahidDeen-x6o 4 ай бұрын
Make another video in data explratoery, eda
@vikasvs5755
@vikasvs5755 11 ай бұрын
super
@Rijuldhungana
@Rijuldhungana Жыл бұрын
data[data['Aggregate rating']==0]['Country'].value_counts() , This also works
@pratik5692
@pratik5692 2 жыл бұрын
feature engineering in one video
@ayushsharma5640
@ayushsharma5640 2 жыл бұрын
Thanks sir
@yasmeenkarachiwala9612
@yasmeenkarachiwala9612 4 ай бұрын
Hello Sir! Thank you. @43.00 why the observation of the maximum number of ratings is from 2.5 - 3.4?
@GuruprasadP-s6s
@GuruprasadP-s6s 8 ай бұрын
We could have used product ID to fill product category column
@Amansharma-he9qg
@Amansharma-he9qg 2 жыл бұрын
first comment sir how to make sql project for portfolio please reply
@mainlykanchan8740
@mainlykanchan8740 2 жыл бұрын
Yes..
@praveentanikella4078
@praveentanikella4078 2 жыл бұрын
For data analyst work the data set is available from any data base or in form of excel or CSV ??
@siddhantgaurav7053
@siddhantgaurav7053 2 жыл бұрын
feature engineering in 1 video
@narayanbabubharali9846
@narayanbabubharali9846 2 жыл бұрын
Nice
@usmanriaz6157
@usmanriaz6157 2 жыл бұрын
Sir, Airline is a nominal feature and in you said that in case of nominal feature, we can do OHE or Mean encoding. Why are you using LabelEncoding ?
@RajaSirOpsc
@RajaSirOpsc 2 жыл бұрын
where is the blackfriday dataset
@sonukumar-yp6vs
@sonukumar-yp6vs 2 жыл бұрын
11:00
@dibyanikshetry3775
@dibyanikshetry3775 Жыл бұрын
I couldn't do the part where we have to show the country names that has given 0 rating It's not showing any output
@aakashpal0777
@aakashpal0777 2 жыл бұрын
Hi
@sangramshinde9262
@sangramshinde9262 2 жыл бұрын
I dont understand replacing na values of product catogry_2 and product catogry_3 with mode we just manipulated the data
@jagadeeshct7083
@jagadeeshct7083 2 жыл бұрын
please share blackfriday dataset ..there is no blackfriday dataset in the given link.
@kirankumar9934
@kirankumar9934 2 жыл бұрын
Even I'm not able to find black_friday dataset
@bestofmusicc__
@bestofmusicc__ 9 ай бұрын
Hi, why did you combined the country code ?? Please explain this.
@A3dull
@A3dull 9 ай бұрын
The first dataset only includes the country code, while the second dataset contains both the country code and the country name. When merging them together, the country name column was populated using the information from the second dataset.
@bestofmusicc__
@bestofmusicc__ 9 ай бұрын
@@A3dull yeah thanks man👍💪
@jececdept.9548
@jececdept.9548 Жыл бұрын
is this a regression problem?
@thedinaaesh
@thedinaaesh 3 ай бұрын
01:41:40 - probably few men are buying on behalf of the women 😂
@garimabatra2658
@garimabatra2658 Ай бұрын
how to download dataset? pls help
@elahehkhazaei4855
@elahehkhazaei4855 9 күн бұрын
Please give us source of you data
@anonymous_12155
@anonymous_12155 Жыл бұрын
I am getting Nan error when I try to replace F with 0 and M with 1 in Black Firday EDA ..How to resolve it?
@pavankumarjammala9262
@pavankumarjammala9262 Жыл бұрын
Once before running that particular code run all cells at a time you will get it
@vijaysharma7677
@vijaysharma7677 2 жыл бұрын
please explain how one can find the location of CSV or get the jupyter NB to read the file location automatically inside a folder I am getting an error while reading the file
@ManishKumar-qh2ql
@ManishKumar-qh2ql 2 жыл бұрын
open with path location and instead of \ use \\
@madhupincha7898
@madhupincha7898 2 жыл бұрын
pwd()
@Agros92
@Agros92 2 жыл бұрын
You can put the csv file on the same folder of the JupyterNB file. To read it it would be - pd.read_csv("data_name.csv") -. If you put the data in another folder and that folder is located in the same folder of the JupyterNB file you can do - pd.read_csv("Folder_Name\\data_name.csv") -
@ShikhaJain-u7y
@ShikhaJain-u7y 4 ай бұрын
I am not finding train.csv file for the second part of video in your github
@himadrikar4664
@himadrikar4664 3 ай бұрын
The link to the data set is given in the first line of the Python notebook. Download the dataset from that link.
@srirama8275
@srirama8275 2 жыл бұрын
What are Prequesties to learn this sir?
@krishnaik06
@krishnaik06 2 жыл бұрын
python
@srirama8275
@srirama8275 2 жыл бұрын
@@krishnaik06 Thank you sir
@abhisheksinghmahra446
@abhisheksinghmahra446 2 жыл бұрын
sir how to deal with utf-8 encoding
@Srushti_Mane
@Srushti_Mane 9 ай бұрын
use latin=1
@azamiqbal8792
@azamiqbal8792 Жыл бұрын
Can you share file for practice
@tanumoyhazra6055
@tanumoyhazra6055 Жыл бұрын
from where i can get your codes for this video ?
@vanshsrivastava6551
@vanshsrivastava6551 2 жыл бұрын
Is this enough to mention in resume
@prafulaggarwal9683
@prafulaggarwal9683 11 ай бұрын
where to find the black friday dataset?
@swetamishra3580
@swetamishra3580 10 ай бұрын
Did you find it?
@himadrikar4664
@himadrikar4664 3 ай бұрын
The link to the data set is given in the first line of the Python notebook. Download the dataset from that link.
@oseikofi4953
@oseikofi4953 Жыл бұрын
I can't find the black friday dataset on your github page
@himadrikar4664
@himadrikar4664 3 ай бұрын
The link to the data set is given in the first line of the Python notebook. Download the dataset from that link.
@moghalkarishma2378
@moghalkarishma2378 Жыл бұрын
Is necessary to hanle missing values in data analysis?
@_k_kd
@_k_kd 11 ай бұрын
yes.
@RolandElvira-l4y
@RolandElvira-l4y 2 ай бұрын
Wilson Larry Moore Richard Martin Daniel
@Pyrometin
@Pyrometin 7 ай бұрын
Guys how to find top 10 Cuisines in data ? help me
@Pyrometin
@Pyrometin 7 ай бұрын
I got it, use this code. final["Cuisines"].value_counts()[:10]
@Abhi-qn4xv
@Abhi-qn4xv 2 жыл бұрын
Can anyone explain when do we use onehotencoding and when do we use Labelencoder(ordinal encoding) since they both do the same job but in a different way, onehot creates multipe new feature while label do all the work in one feature. Like in this case wouldn't be better to use labelencoder to do encoding in Additional info feature since onhot will create multiple new sparse eatures which might increase he workload of the mode or am i missing some point here?
@sanjaysanjay862
@sanjaysanjay862 2 жыл бұрын
One-hor encoding is used only for independent variables (feature) but label encoder is used for target variable.And they both won't do the same task one-hot encoding gives seperate columns for each catagory.As of my understanding.If wrong reply
@Abhi-qn4xv
@Abhi-qn4xv 2 жыл бұрын
@@sanjaysanjay862 well u r correct. I did some reading in this topic and found out that although label encoder can be used on independent variables too, it's usually not used. On independent variable, one hot is better than label encoder as label encoder might confuse the model into learning that feature as a rank. So instead of learning 1 as a numerical representation of a word, model will think 1 as a rank. Hope u understand my point
@sanjaysanjay862
@sanjaysanjay862 2 жыл бұрын
@@Abhi-qn4xv Yes, I agree that
@adeshinaibrahim9641
@adeshinaibrahim9641 2 жыл бұрын
In simple terms use one-hot encoding when you have limited number of categories but otherwise dont.
@muhammadzakiahmad8069
@muhammadzakiahmad8069 2 жыл бұрын
Zomato Dataset Assignment: (With respect to value counts) cus_values = final_df["Cuisines"].value_counts().values cus_labels = final_df["Cuisines"].value_counts().index plt.pie(cus_values[:10],labels=cus_labels[:10],autopct='%1.2f%%') (With respect to Aggregate rating) final_df[['Aggregate rating','Cuisines']].groupby(['Aggregate rating','Cuisines']).size().reset_index().tail(10) Please correct me if i did it wrong.
@FaizanSharif-k8g
@FaizanSharif-k8g 3 ай бұрын
final_df= final_df.replace(np.nan,'Dummy') --- Convert NaN to Dummy one_string = ','.join(final_df['Cuisines'].tolist()) -- Convert Cuisines columns to list and join one_list = one_string.replace(" ","").split(',') -- replace blank spaces by comma pd.value_counts(one_list)[:10] --- top 10 values
@PradeepSahu-kh8vr
@PradeepSahu-kh8vr Жыл бұрын
im not getting zomato csv file....can anyone help????
@pavankumarjammala9262
@pavankumarjammala9262 Жыл бұрын
Yeah !! bro same prblm from my side also
@ashishsaha6904
@ashishsaha6904 2 жыл бұрын
why latin-1 ?
@naveenojha8377
@naveenojha8377 Жыл бұрын
Hindi m hota to jarur kuch Sikh pate 😓😓😓😓
@jackymarcel4108
@jackymarcel4108 2 ай бұрын
Lewis Barbara Davis Brenda Brown Michael
@prashantgupta2172
@prashantgupta2172 2 жыл бұрын
Hindi me vedio bana digite aap
@NooBGamer-fd4ln
@NooBGamer-fd4ln 4 ай бұрын
he said fucked instead of fixed 1:51:00 😆
@jedits7835
@jedits7835 Жыл бұрын
after do doinh this project can we add this resume
@MLMinute
@MLMinute 10 ай бұрын
Everything is perfect except the pronunciation. Haha
@UniversalFacts-unknown
@UniversalFacts-unknown 2 жыл бұрын
How to give just zomato.csv in df line instead of giving entire path
@himanshutola3729
@himanshutola3729 2 жыл бұрын
Keep the CSV and the ipynb file on same folder
Data Analysis with Python for Excel Users - Full Course
3:57:46
freeCodeCamp.org
Рет қаралды 3,3 МЛН
This Game Is Wild...
00:19
MrBeast
Рет қаралды 186 МЛН
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 138 МЛН
Can You Find Hulk's True Love? Real vs Fake Girlfriend Challenge | Roblox 3D
00:24
The New Efficient Way Of Applying Jobs And Getting Hired
11:33
Krish Naik
Рет қаралды 30 М.
I Tried 50 Data Analyst Courses. Here Are Top 5
8:41
Stefanovic
Рет қаралды 108 М.
Exploratory Data Analysis with Pandas Python
40:22
Rob Mulla
Рет қаралды 501 М.
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 380 М.
Exploratory Data Analysis
5:02
IBM Technology
Рет қаралды 65 М.
What does a Data Analyst actually do? (in 2024) Q&A
14:27
Tim Joo
Рет қаралды 78 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 104 М.
This Game Is Wild...
00:19
MrBeast
Рет қаралды 186 МЛН