CORRECTION: Bode Plots by Hand: Complex Poles or Zeros

  Рет қаралды 292,401

Brian Douglas

Brian Douglas

Күн бұрын

Пікірлер: 112
@arien7371
@arien7371 5 жыл бұрын
Every time Brian says ‘Thanks for watching’ it’s like a saint saying ‘Thanks for letting me save your life’
@simplyxem33
@simplyxem33 11 жыл бұрын
You say thanks for watching but thanks for saving my life in ece3101 signals and systems. My professor can't teach at all and you just cleared up bode plots for me with your videos! Great work!
@antorariful1387
@antorariful1387 8 жыл бұрын
heiii...
@theboxingbiker
@theboxingbiker 7 жыл бұрын
simplyxem33 Me too I dont understand why do teachers explain it so badly?
@jimrummy1300
@jimrummy1300 7 жыл бұрын
Simple answer, most aren't meant to be teachers. Brian gets it.
@aryangaurav7883
@aryangaurav7883 2 жыл бұрын
@@antorariful1387 😂😂
@yasmeenalsadi9557
@yasmeenalsadi9557 6 жыл бұрын
thank you to the moon and back! I can't even tell you how efficient these videos are!
@astafzciba
@astafzciba 8 жыл бұрын
i entered an endless loop of videos, my system become undamped, please help.
@chanakyasinha8046
@chanakyasinha8046 5 жыл бұрын
Keep your roots at lhf
@aparnasadhukhan5567
@aparnasadhukhan5567 4 жыл бұрын
Try to add a zero in your system.It'll bend the root locus in the left half s plane and you may get back your stability.
@kkaleeny
@kkaleeny 10 жыл бұрын
It would be very helpful if you were to use examples using numbers in order to show us what an exam question would look like. Love your work. Thanks so much.
@gustavoalbino8422
@gustavoalbino8422 6 жыл бұрын
@Zoe TheCat I think the generic treatment is very important to the correct understanding, but some examples at the end of the video could be nice too.
@liuxoB
@liuxoB 3 жыл бұрын
an exam question at my course would just be like this style and not use real numbers lol
@TurdBoi666
@TurdBoi666 2 ай бұрын
​@@liuxoB same lol
@_Junkers
@_Junkers 10 жыл бұрын
It'd be great if you could extend this example to an actual application e.g. active filters. Would help put this into context.
@roey224
@roey224 5 ай бұрын
dude its 2am and i just binged watched all your videos about this subject, thank you so so much! it was super helpful!
@vivarun
@vivarun 11 жыл бұрын
Dear Brian Douglas, Thank you for these wonderful video lectures. These video lectures are so good to understand the fundamental math and the concept.
@888899991
@888899991 9 жыл бұрын
This is pure gold.
@jouleSansLoi
@jouleSansLoi 11 жыл бұрын
At Steven. Remember when he had the transfer function, placed unity on top, did s = jw, and then multiplied&divided the expression with the complex conjugate? Well, the numerator is just unity times the complex conjugate, and you can just simplify the denominator with a foil technique. Do it.. See how it beautifully simplifies to the expression we were using?
@subratadey1464
@subratadey1464 8 жыл бұрын
please give some more examples when there is a complex pole along with other poles
@theFatMan5050
@theFatMan5050 2 жыл бұрын
As someone with ADHD I find it impossible to focus in class. Thank you for the lectures good sir you're saving lives.
@RuffRoadDesigns
@RuffRoadDesigns 6 жыл бұрын
I just completed a university level linear circuits class that was very confusing and I learned more in this video than I did all semester. #youtubeUniversity
@anjishnu8643
@anjishnu8643 6 жыл бұрын
9:30 how did you arrive at the expressions w0/5^zeta and w0*5^zeta? Doubt aside, have found these videos extremely helpful. Thanks a lot.
@carultch
@carultch Жыл бұрын
It probably comes from replacing omega with 10^x, to represent the logarithmic scale. Then you can take the derivative of the phase relative to x, and you'll get the straight line approximation, centered on the break frequency. Where this intersects the flat lines, will approximately occur around 10^x = omega0*5^(-zeta) and 10^x = omega0*5^zeta.
@youngidealist
@youngidealist 6 жыл бұрын
You are amazing Brian. Studying for a final right now and really needed this review (feels like a better introduction than I got this semester).
@gustavoalbino8422
@gustavoalbino8422 6 жыл бұрын
First of all, congratulations for all your control system lectures Brian! But what about the bode plot of transfer functions with delay, like [1/(s+1)]*e^(-2s). How can I do this bode plot?
@Rene_Christensen
@Rene_Christensen 5 жыл бұрын
Gustavo Albino A delay can be seen as a extra added linear phase.
@jakethiem
@jakethiem 9 жыл бұрын
Thank you! I've subscribed, this will hopefully help a lot as we have been covering bode plots for weeks and I'm still so so lost.
@Nerrvih
@Nerrvih 10 жыл бұрын
Thank you for this series! It sure does explain things nicely
@niyooshashahgaldi7065
@niyooshashahgaldi7065 4 жыл бұрын
thank you thank you this series saved my life!!
@Muz493
@Muz493 10 жыл бұрын
Nice video series. Keep it up Brian!
@HugoCaen1
@HugoCaen1 10 жыл бұрын
Nice work, dude! Helped me a lot! Keep up the videos, they're just amazing. Congrats from Brazil o/
@ayadawsy7828
@ayadawsy7828 6 жыл бұрын
Excellent, could you told me what is the name of software did you use for explanation.
@MindfulFreedom
@MindfulFreedom 11 жыл бұрын
I have a more general question: What textbook would you recommend for learning more about control systems?
@stancosmin-bogdan1236
@stancosmin-bogdan1236 2 жыл бұрын
Have you found a good one?
@jyotiradityasatpathy3546
@jyotiradityasatpathy3546 Жыл бұрын
IS Nagrath
@hiteshchaudhary7964
@hiteshchaudhary7964 11 жыл бұрын
thanks a lot brian for all u r control system lectures.my many concept has been cleared.would like to watch videos on pid tuning and how to tune for any transfer function of plant.
@thkdec1
@thkdec1 10 жыл бұрын
Hey Brian, what is the trick to plot bode with multiple poles and zeros? I've review this video a few times but still stuck on this.. Thanks :)
@JZ1917
@JZ1917 10 жыл бұрын
Thank you for doing these videos. Very good work
@alexeyorekhov3982
@alexeyorekhov3982 8 жыл бұрын
Thank you. I really appreciate the work you do here!
@shounakdas9393
@shounakdas9393 6 жыл бұрын
Good lesson.Nice work!
@olafurbjarkibogason7148
@olafurbjarkibogason7148 9 жыл бұрын
Thanks for the great videos Brian, they are lucid and easy to follow. I did catch one small error in this video though. On 8:58 you state that when xi < 0.5 (under-damped system), the peak of the gain is at omega_0 (the pole/natural frequency). That can happen (as in series/parallel RLC circuits) but generally is not the case. Instead the peak is somewhere "really close to" omega_0, more precisely at the damped natural frequency = omega_0 * sqrt(1 - xi^2) [0]. Keep on making these great videos, all the best! [0] en.wikipedia.org/wiki/Damping#Under-damping_.280_.E2.89.A4_.CE.B6_.3C_1.29
@theboxingbiker
@theboxingbiker 7 жыл бұрын
You are the best. Can you do an example like this for the nyquist please.
@MrNuigit
@MrNuigit 9 жыл бұрын
Thank you Brian/God.
@SaideepRokzz
@SaideepRokzz 9 жыл бұрын
I have a doubt: When W(omega)/W0(natural frequency) is tending to zero the complex equation is negative((1-j(small number)) In that case arctan2(value) of this complex number is 180 degrees as you told in previous lectures but why it is zero degrees in this case? Thanks for spending your valuable time
@MasoomaAli-eh3qo
@MasoomaAli-eh3qo 11 ай бұрын
because imaginary part is very small almost zero so arctan is also 0 degree
@FORESTER2011
@FORESTER2011 4 жыл бұрын
This correction is an improvement from last videos, which are more clear :)
@jassimjaved3309
@jassimjaved3309 4 жыл бұрын
Thank you for making this!
@islamnazmy302
@islamnazmy302 2 жыл бұрын
I think a more mathematically rigorous way to get the limit at 4:10 is with L'Hopital's Rule
@asmarali8579
@asmarali8579 6 жыл бұрын
your methodology is awesome :)
@danningzhao7361
@danningzhao7361 2 жыл бұрын
You saved my life😊
@bsaxon715
@bsaxon715 8 жыл бұрын
please add this to your bode plots playlist
@steven28091
@steven28091 11 жыл бұрын
This is an excellent video, subbed. However, can some one clarify where the equations for the imaginary and real components came from?
@SohilShah_Melodyman
@SohilShah_Melodyman 6 жыл бұрын
Very well explained....thanks a ton!
@abcddd580
@abcddd580 4 жыл бұрын
This was extremely helpful. thanks.
@nurdeens
@nurdeens 9 жыл бұрын
hey did you do a nyquist by Hand: Complex Poles or Zeros video? Or do you know a good website or video that explains with a few examples?
@doctorbobstone
@doctorbobstone 6 жыл бұрын
It would be helpful if you included this video in the "All Control Systems Videos" playlist.
@tvpedroso
@tvpedroso 10 жыл бұрын
Great videos, it has helped many people. Just one question. Using -180º to the phase angle is equivalent to using 180º? At 7:00 you used the negative one, but is it different if I use positive?
@MsHShuaib
@MsHShuaib 9 жыл бұрын
Yes, negative is for 1/s^2 and positive is for s^2. I THINK. Please do NOT take my word for it. watch his complete playlist where he mentions the difference.
@matthewjames7513
@matthewjames7513 7 жыл бұрын
Can someone explain why we let s = jw? He mentioned in a previous video it's because we're interested in the steady state response, but I don't get why :'(
@JamesS221193
@JamesS221193 6 жыл бұрын
s=sigma +jw, at steady state sigma=0
@aparnasadhukhan5567
@aparnasadhukhan5567 4 жыл бұрын
Jw are the phisically realizable frequencies
@kindjupiter
@kindjupiter 6 жыл бұрын
thank you for very useful videos. I have a question. By OMEGA not (W0) u mean Cutoff frequency , Am I right?
@psonney
@psonney 11 жыл бұрын
can you please explain why you took 5^zeta approximation in the last section?
@jimbalta
@jimbalta 8 жыл бұрын
Do you have any useful links on how to estimate the transfer function from a bode plot? For example, how many poles/zeros your system likely has and where they might be located?
@jimbalta
@jimbalta 8 жыл бұрын
+James Finch *sighs* never mind. The number of poles + number of zeros = the number of break frequencies that can be seen. Any time you have a break frequency that takes you up in magnitude, that indicates a zero, and any time you have a break frequency that takes you down, you have a pole. Furthermore, your high frequency slope is related to how many more poles than zeros you have. -20dB/decade = 1 more pole, -40dB/decade = 2, etc.
@hazirahmoon8795
@hazirahmoon8795 8 жыл бұрын
sir can i know how to get transfer function from my bode plots if my high frequency asymptote at -270°?
@imadalrouh41
@imadalrouh41 10 жыл бұрын
thanks for these amazing video, But could you please tell me which software you used to make these video. it will be very helpful for me because i am professor of power electronics. Thanks again
@MEHJABIN
@MEHJABIN 11 жыл бұрын
Could You please tell me how to Find Asymptote on the bode plot??
@GeneralSeptem
@GeneralSeptem 8 жыл бұрын
Is 5^\zeta a better approximation than 10^\zeta for the phase breakpoints? It seems if you had \zeta = 1 then you'd want the straight line to start at \omega_0/10 and end at \omega_0*10.
@abdullahalmubin
@abdullahalmubin 5 жыл бұрын
Dude! why don't you put a popup info message about the mistake? I understood the last one well, and now you are telling me there was a mistake, and what I've learned was wrong! But anyway! you explained here very well; thanks!
@jerred2275
@jerred2275 8 жыл бұрын
Very good video, what would be the form of the transfer function for complex zeros? Would it be exactly the same as that for the poles, but flipped? So would you find w0^2 at the end also?
@carultch
@carultch Жыл бұрын
Yes, it will be flipped, and w0^2 will still equal the final term of the quadratic expression.
@arunpandian294
@arunpandian294 Жыл бұрын
5:59 How can you say that the gain falls of at -40 dB *per Decade* Isn't the frequency response plotted for powers of 10, i.e., 10^-2, 10^-1, 10^0, 10^1, 10^2, 10^3...... and *not* 10^1*w0, 10^2*w0 ?? (Here w0 -> Omega nought) As far as I know, the Frequency response is simply plotted for powers of 10 (i.e. 0.01, 0.1, 1, 10, 100, 1000,...) and not for multiples of 10 for w0. I mean *that's why the name DECADE* right??
@arunpandian294
@arunpandian294 Жыл бұрын
*multiples of w0 by powers of 10* is not Decades right??
@Sarang4401
@Sarang4401 11 жыл бұрын
Its really helpful.. Thanks a ton :)
@96izsi
@96izsi 7 жыл бұрын
what program do you use?
@saransh85
@saransh85 6 жыл бұрын
At 8:50 what do u mean by peak
@chvishnuvardhanreddy3168
@chvishnuvardhanreddy3168 9 жыл бұрын
can u please explain how the 20db/decade = 6db/octave ?
@khuldoonusman8582
@khuldoonusman8582 9 жыл бұрын
CH Vishnu Well, I think, that is simply converting from a base of 10 to a base of 8.
@Krsnda
@Krsnda 7 жыл бұрын
I've seen people using w0/(5^zeta) and w0*5^zeta and w0/(10^zeta) and w0*10^zeta. Which one is correct ?
@mustafaadel8194
@mustafaadel8194 5 жыл бұрын
at 5:35 I found a contradiction the equation that you deduced depending on w >> w0 is used at 5:35 to evalute the response when w = w0 which doesn't make any sense ! and BTW thanks a lot for your videos they're really useful
@ianchen8718
@ianchen8718 6 жыл бұрын
it's do really help me on my final exam lol !!
@Kletustheslackjawedyokel
@Kletustheslackjawedyokel 11 жыл бұрын
Hi. I don't understand how to deal with the DC gain for these. If we had for instance 10/(s^2 + s + 4) the break frequency would be 2 and the slope at 2 would be -40dB/decade, but how do you calculate the DC gain from this?
@BrianBDouglas
@BrianBDouglas 11 жыл бұрын
Ahh, DC gain is very simple to calculate from a transfer function. DC has a frequency of w = 0 Hz. And since for steady state responses S=jw, all you have to do is set s = 0 and see what you get. In this case it's 10/4 or 2.5. Another way to view it is like this: The classic 2nd order transfer function is w^2/(s^2 + 2zw*s+w^2). If you set S to 0 you can see it has a DC gain of 1 (0dB). If you match your transfer function to the standard TF you'll get (2.5 * w^2) / (s^2 + 2zw*s+w^2), where w=2, and z = 1/4, and the DC gain is 2.5. These are two transfer functions, a 2nd order one and a constant one. So to draw the Bode plot start with the standard TF and then move the whole curve up 2.5 ( ~8dB). Hope that helps you.
@Kletustheslackjawedyokel
@Kletustheslackjawedyokel 11 жыл бұрын
Brian Douglas helps very much. thank you. very clear and helpful videos.
@Kletustheslackjawedyokel
@Kletustheslackjawedyokel 11 жыл бұрын
James Gilson Hi Brian. I looked over your Nyquist videos and I am still confused what to do for a certain type of transmittance: specifically one where we have a pole at the origin, a pole on the real axis, and a pair of complex poles on the Im axis. The one at the origin and on the real axis I get when they are alone, but the Im axis poles I am confused on. Not sure how to bypass them?
@lesliegilson4891
@lesliegilson4891 11 жыл бұрын
That's incredible James! Lm
@koukaalgerienboy
@koukaalgerienboy 6 жыл бұрын
you're the best thank you
@JohnMillner
@JohnMillner 7 жыл бұрын
you are amazing, thank you!
@tajammalnawaz5552
@tajammalnawaz5552 7 жыл бұрын
atleast you need to give when one example that utilize all these stuff.
@TaahirBhaiyat
@TaahirBhaiyat 7 жыл бұрын
why divide and multiply 5^zeta to get the limits for slope? why 5?
@watanake
@watanake 9 жыл бұрын
OMG Thank you so much!!!!
@ronpearson1912
@ronpearson1912 5 жыл бұрын
How to calculate an exact zeta function?
@ningfengzong5513
@ningfengzong5513 9 жыл бұрын
you are the man !!!!!!!!
@bje1189
@bje1189 10 жыл бұрын
Truly Excellent videos . Brian you have a gift for communication . Is there a good text book you can recommend that presents these topics for electronic circuits
@juliansydenham9371
@juliansydenham9371 8 жыл бұрын
Good effort up-loader, but for some reason I can’t keep up with your output.
@amanjain2549
@amanjain2549 7 жыл бұрын
why would you have to thank i thank you for putting this lecture
@Muhammad_Saleh754
@Muhammad_Saleh754 11 жыл бұрын
how can i draw the line in gain and magnitude when the zeta equals zero ?
@BrianBDouglas
@BrianBDouglas 11 жыл бұрын
As zeta goes to zero then then 1/(2*zeta) goes to infinity, and 5^zeta goes toward 1. Therefore, gain would spike up to infinity at the break frequency and magnitude would jump from 0 deg to -180 instantly (vertical line). Otherwise, the approximation much greater than and much less than the break frequency would stay more or the less the same.
@Muhammad_Saleh754
@Muhammad_Saleh754 11 жыл бұрын
thanks man
@Shuey272
@Shuey272 8 жыл бұрын
wait you guys mean to say '... at the break frequency and phase would jump from 0 deg...' right?
@egyMag1990
@egyMag1990 9 жыл бұрын
what do you mean by the gain is more negative at w.
@carultch
@carultch Жыл бұрын
The gain isn't really negative, because it is on a logarithmic scale. The decibel value which is a logarithmic representation of the gain is negative, which simply means it is less than unity.
@egyMag1990
@egyMag1990 Жыл бұрын
@@carultch this was 7 years ago😀😀😀😀. Thank you
@nimeshsingh9271
@nimeshsingh9271 3 жыл бұрын
Quality !
@mr.hibster9603
@mr.hibster9603 3 жыл бұрын
Could someone tell me what w0 stands for?
@carultch
@carultch Жыл бұрын
It's an omega, and it means natural frequency.
@jessstuart7495
@jessstuart7495 6 жыл бұрын
5:44 You don't need to calculate the Real and Imaginary parts of the entire transfer function! Just figure out the Re and Im parts of the Numerator and Denominator. Your approach is kind-of nuts, and way too much work! You can write these out almost by inspection... |T(jω)| = |Numerator|/|Denominator| = (ω0)^2 / | -ω^2 + j*2*ζ*ω0*ω + (ω0)^2| = (ω0)^2 / sqrt( ((ω0)^2-ω^2)^2 + (2*ζ*ω0*ω)^2 ) Magnitude at (ω = ω0): |T(jω0)| = (ω0)^2 / sqrt(0+ (2*ζ*ω0*ω0)^2 ) = (ω0)^2 / 2*ζ*ω0*ω0)^2 = 1/(2*ζ) arg(T(jω)) = arg(Numerator) - arg(Denominator) = 0 - arctan(2*ζ*ω0*ω/((ω0)^2-ω^2) = atan2(-2*ζ*ω0*ω, (ω0)^2-ω^2) Phase at small ω: atan2(-2*ζ*ω0*ω, (ω0)^2)) = -arctan(-2*ζ*ω, ω0) goes to -0 deg. Phase at large ω: atan2(-2*ζ*ω0*ω, -ω^2) = atan2(-2*ζ*ω0, -ω) goes to -180 deg. Phase angle at ω0 + e: atan2(-2*ζ*ω0*(ω0+e),(ω0)^2-(ω0+e)^2) = atan2(-2*ζ*ω0*(ω0+e),-2*ω0*e) = atan2(-ζ*(ω0+e), -e) = atan2(-ζ*ω0, -e) = atan2(any negative numer, -0) goes to -90 deg.
@محمودامجد-ب8ش
@محمودامجد-ب8ش 9 жыл бұрын
WHO WE FIND FIND PHASE -180 DEGREE ??!
@atayavuzz
@atayavuzz 6 жыл бұрын
who let the dogs out? who who who who
@lonelymechanic3688
@lonelymechanic3688 6 жыл бұрын
it's +40log(w/wn) not -40log(w/wn)
Designing a Lead Compensator with Bode Plot
14:19
Brian Douglas
Рет қаралды 367 М.
Gain and Phase Margins Explained!
13:54
Brian Douglas
Рет қаралды 660 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 43 МЛН
路飞做的坏事被拆穿了 #路飞#海贼王
00:41
路飞与唐舞桐
Рет қаралды 26 МЛН
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 33 МЛН
Bode Plots by Hand: Complex Poles or Zeros
11:35
Brian Douglas
Рет қаралды 438 М.
Example 102: Drawing a Bode plot with complex poles -  STEP BY STEP
7:54
bioMechatronics Lab
Рет қаралды 19 М.
Bode Plots Explained
13:53
Curio Res
Рет қаралды 49 М.
But what is the Fourier Transform?  A visual introduction.
20:57
3Blue1Brown
Рет қаралды 10 МЛН
Signals and Systems - Bode Plots
18:04
UConn HKN
Рет қаралды 157 М.
The Root Locus Method - Introduction
13:10
Brian Douglas
Рет қаралды 1 МЛН
Learn Three Ways You Can Create Bode Plots - Workbench Wednesdays
9:52
element14 presents
Рет қаралды 8 М.
EEVblog #396 - Bode Plotting on Your Osciloscope
20:27
EEVblog
Рет қаралды 166 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 43 МЛН