Data Mining with Weka (2.6: Cross-validation results)

  Рет қаралды 47,699

WekaMOOC

WekaMOOC

Күн бұрын

Пікірлер: 9
@yogeshsabnis8507
@yogeshsabnis8507 10 жыл бұрын
Ian, I like the idea about your classical tune and enjoy your videos as well. I have a question - I am building a 2-class model using Naive Bayes for a dataset of 1200 data points. I find that my ROC area with CV is marginally higher than non-CV. Is this even possible? Also, should sensitivity and specificity correlate with ROC area? Many thanks
@swapnilgaikwad3773
@swapnilgaikwad3773 8 жыл бұрын
What are the different main parameters for classifiers like Random Forest and J48? How the result of cross-validation on it changes and why? Can you answer those questions.
@arashhabibilashkari5609
@arashhabibilashkari5609 9 жыл бұрын
Really useful and nice. Thanks.
@tamaravasylenko8218
@tamaravasylenko8218 7 жыл бұрын
How to do Jackknife cross validation in Weka for 2-class model? Using, say, J48?
@jeviounipers
@jeviounipers 10 жыл бұрын
Nice tutorial. Thanks
@StevenJonWest
@StevenJonWest 6 жыл бұрын
Hi Ian, I do not think the comparison of 10-fold cross validation to the 10% holdout method is very fair, as cross-validation will by definition assess the whole set of 10 segments 10 times (using each segment in turn as the test set) to get the accuracy measure, whereas with 10% holdout only one 10% test set is used once to get the accuracy. To get a fair comparison of holdout and cross validation, you would need to run the holdout 10 times for every one run of cross validation. This would show that cross-validation is probably marginally more accurate on average, as the variance in the holdout method (due to the RANDOM SAMPLING) is reduced by using a more systematic sampling method as in stratified cross validation. I think the point you're making is valid, but the way you're making it, for me, is not a fair comparison...
@ClarinetAndCocktails
@ClarinetAndCocktails 6 жыл бұрын
Yes, I agree with you; you are exactly correct. And very well put - Thanks! I guess the point I was trying to make was to encourage people to use cross-validation rather than holdout in Weka.
@Sina-Amn
@Sina-Amn 4 жыл бұрын
That's a great point! But, I think the focus of this video is more on the standard deviation rather than the mean.
@wasd3108
@wasd3108 3 жыл бұрын
Who came here only for the music?
Data Mining with Weka (3.1: Simplicity first!)
8:23
WekaMOOC
Рет қаралды 45 М.
Data Mining with Weka (2.1: Be a classifier!)
11:19
WekaMOOC
Рет қаралды 85 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
Data Mining with Weka (1.4: Building a classifier)
9:01
WekaMOOC
Рет қаралды 142 М.
Design of Experiments (DoE) simply explained
25:53
DATAtab
Рет қаралды 63 М.
Сборник Эксклюзивов 2024 - Уральские Пельмени
1:33:24
Уральские Пельмени
Рет қаралды 1,4 МЛН
Covariance, Clearly Explained!!!
22:23
StatQuest with Josh Starmer
Рет қаралды 577 М.
I Helped 2,000 People Walk Again
15:31
MrBeast
Рет қаралды 25 МЛН
Data Mining with Weka (3.5: Pruning decision trees)
11:06
WekaMOOC
Рет қаралды 63 М.
Data Mining with Weka (2.4: Baseline accuracy)
8:01
WekaMOOC
Рет қаралды 58 М.
Covariance Clearly Explained!
7:47
Normalized Nerd
Рет қаралды 102 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН