You are doing amazing explanation with the clear understanding and knowledge you have. Thanks
@Easy_Eds2 жыл бұрын
Your explanations are clear and easy to understand. You explain the details left out of other videos.
@coemgeincraobhach2362 жыл бұрын
I literally just started using the functional API instead of sequential and was confused why there was two ways of building models, so handy this came up as recommended. Functional makes way more sense in the long run. Thanks!
@joapen3 жыл бұрын
very didactic way to explain how it works, awesome video, many thanks!!!
@lfmtube3 жыл бұрын
Great density and better info quality. Congratulations and Thank you. I am a new subscriber
@NuclearSpinach2 жыл бұрын
Great explanation. Functional API actually makes more intuitive and clear sense to me
@monamijaiswal58682 жыл бұрын
Great explanation sir, I'd be very helpful if you create a playlist for neural network videos which are already on your channel
@elielberra28672 жыл бұрын
Thank you! This video was very clear!! and the handwriting is impecable haha :)
@habibkettana4887 Жыл бұрын
Thanks a lot M. Badri, it was very well explained.
@eduardo.garcia2 жыл бұрын
Finally I understood this!!! Thanks a lot
@NatashaShrivastava-xz1rm2 жыл бұрын
Excellent video
@COOKINGBIRD3 жыл бұрын
Thank you so much for this information.Would you be so kind to so how to do RBFN training , validation in Keras
@abdullahiabdi5887 Жыл бұрын
Thank you very much sir. This is a great explanation! and this came very handy for my research.
@husseinfg14783 жыл бұрын
Very useful channel.
@mohammedabdo.m5762 жыл бұрын
This is ANN or RNN model ?
@mozheet77583 жыл бұрын
Can we use the second method for multiple outputs?
@mahendrank98793 жыл бұрын
yep
@mehdisoleymani60122 жыл бұрын
Thanks a lot for your great courses, is it possible for you to explain my question? How should we add non-image features to our CNN model (features like cat and dog prices) to our flatten layer? Does the CNN model new added features belong to which input image?
@utkarshsingh2675 Жыл бұрын
Important video
@pragyan111142 жыл бұрын
How to know howmany neurons should be there when you add dense .for each layers??
@rs91302 жыл бұрын
hello author, i want to train a model to predict heatmap (mean square error loss) and binary segmentation (binary cross entropy loss). i tried to train model using multi branch (2 branch duplicates for 2 output). but the the final output will favour for only one type of output. For example when i train using model.fit with equal loss weights, the output is good for heatmap, but binary mask output is wrong and gives pixels 1 for the regions similar to heatmaps. And when i train using gradtape loop, the output is good for segmentation mask, but heatmaps are wrong and looks like masks. how can i solve this, please give me your suggestion. thank you
@husseinfg14783 жыл бұрын
great explanation.
@juanete69 Жыл бұрын
Hello. Why do you write input_shape=(8, ) and not input_shape=(8) without the comma.
@HS0 Жыл бұрын
Can't write " input_shape=(8) " , We can write input_shape=(8,) to tell python : " The input dimension = 1 , and the row = 8 , but we don't have columns Because we are in first dimension "
@temp201113 жыл бұрын
Great thank you
@rachidelfermi67593 жыл бұрын
thanks this explaint it clearly
@abhinavkantАй бұрын
Thanks
@egehanasal7103 жыл бұрын
THANK YOU SIR
@Rsudano Жыл бұрын
Thank you :)
@gauravbhasin26255 ай бұрын
you did not explain the basic architectural difference....
@ayushgupta18813 жыл бұрын
Thanks a lot !
@ThePantafernando4 ай бұрын
Is it just me that think those API really full of bad smells? For starters, why would someone write two ways to do the same thing? Thats making stuffs more complicated for no real gain in the send. That way of chaining functions in functional programming really hurt my ways when compared to classical chaining from functional programming.