Deep Learning With PyTorch - Full Course

  Рет қаралды 780,305

Patrick Loeber

Patrick Loeber

Күн бұрын

Пікірлер: 468
@patloeber
@patloeber 3 жыл бұрын
I hope you enjoy the course :) And check out Tabnine, the FREE AI-powered code completion tool that helps you to code faster: www.tabnine.com/?.com&PythonEngineer * ---------------------------------------------------------------------------------------------------------- * This is a sponsored link. You will not have any additional costs, instead you will support me and my project. Thank you so much for the support! 🙏
@sepgorut2492
@sepgorut2492 3 жыл бұрын
at 37:00 I found after adding 2 that not all members of the tensor had exactly x+2. I tried this several times with always one of the parts of the tensor had less than x+2. Then at 37:16 you also had an anomaly. Why is this?
@ЕвгенийКоваленко-к9з
@ЕвгенийКоваленко-к9з 3 жыл бұрын
Thank you very much. You did a great work!
@Ивангай-б2л
@Ивангай-б2л Жыл бұрын
.👆Never love anyone who treats you like you’re ordinary.
@maranata693
@maranata693 Жыл бұрын
great video! thank you but please don't delete each line that you code! wait till the subject is finished then delete them once
@craigrichards5472
@craigrichards5472 2 ай бұрын
I’m really enjoying it mate. Hope you are doing well. 🎉
@straighter7032
@straighter7032 Жыл бұрын
Incredible tutorial, thank you! Some corrections: - 1:12:02 correct gradient function in the manual gradient calculation should be `np.dot(2*x, y_predicted - y) / len(x)`, because np.dot results in a scalar and mean() has no effect of calculating the mean. (TY @Arman Seyed-Ahmadi) - 1:23:52 the optimizer is applying the gradient exactly like we do, there is no difference. The reason the PyTorch model has different predictions is because 1) you use a model with a bias, 2) the values are initialized randomly. To turn off the bias use `bias=False` in the model construction. To initialize the weight to zero use a `with torch.no_grad()` block and set `model.weight[0,0] = 0`. Then all versions result in the exact same model with the exact same predictions (as expected).
@Rojuvid
@Rojuvid Жыл бұрын
Thanks for this second comment! To add to this: nn.Linear wants to solve y = wx + b here. This 'b' is the bias, and by setting bias = False, instead it learns y = wx as we want it to. This also means that model.parameters() will yield only [w] and not [w, b] anymore, so do not forget to change that in line 52 in the video as well.
@armansa
@armansa 2 жыл бұрын
This is a fantastic tutorial, thank you for sharing this great material! There is one mistake though that needs clarification: ========================================== At 1:12:02 it is mentioned that the code with automatic differentiation does not converge as fast because "back-propagation is not as exact as the numerical gradient". This is incorrect: the reason why the convergence of the two codes are different is because there is a mistake in the gradient() function. When the dot product np.dot(2x, y_pred_y) is performed, the result is a scalar and .mean() does not do anything. Instead of doing .mean(), np.dot(2x, y_pred_y) should simply be divided by len(x) to give the correct mean gradient. After doing this, both methods give the exact same convergence history and final results.
@reedasaeed4493
@reedasaeed4493 2 жыл бұрын
I wishhhh saw your comment earlier. I was just going crazy that what am I doing wrong when calculating manually.
@sebula8001
@sebula8001 2 жыл бұрын
Thanks for this comment, I was a bit concerned when he said that.
@sohamdas
@sohamdas 3 жыл бұрын
This is one of the very few videos which is teaching Pytorch from the ground up! Beautiful work, @Python Engineer. Highly recommend it for any newbie + refresher.
@ozysjahputera7669
@ozysjahputera7669 2 жыл бұрын
I just completed the course on ML from scratch from Python Engineer. It was a great course for someone who learned all those algorithms in the past and wants to see how they get implemented using basic python lib and numpy.
@kamyararshi6235
@kamyararshi6235 2 жыл бұрын
Thanks for the course Patrick! It was a great refresher! BTW, at 3:42:02, in the newer versions instead of pretrained=True it is changed to weights=True.
@liorcole7307
@liorcole7307 2 жыл бұрын
This is literally incredible. Perfect mix of theory and actual implementation. I can't thank you enough
@Ивангай-б2л
@Ивангай-б2л Жыл бұрын
.👆Girls dream of chatting with you
@DataProfessor
@DataProfessor 3 жыл бұрын
Wow this is so cool Patrick, a free course on PyTorch, great value you are bringing to the community 😆
@patloeber
@patloeber 3 жыл бұрын
Thanks so much :)
@shunnie8482
@shunnie8482 3 жыл бұрын
Finally PyTorch doesnt seem as scary as it was before. The best tutorial I could find out there and I understood everything you've said. Thanks a lot.
@patloeber
@patloeber 3 жыл бұрын
glad to hear that :)
@alexcampbell-black8543
@alexcampbell-black8543 2 жыл бұрын
For the feedforward part, you need to send the model to the GPU when instantiating it: model = NeuralNet(input_size, hidden_size, num_classes).to(device) if your device is 'cuda' and you forget the '.to(device)' you will get an error.
@liorcole7307
@liorcole7307 2 жыл бұрын
omg thank you so much for this. saved me hours trying to figure out what was wrong serious life savor
@Barneymeatballs
@Barneymeatballs 3 жыл бұрын
I don't even need to watch it to know its quality. Can't wait to watch it and thanks for uploading!
@patloeber
@patloeber 3 жыл бұрын
Thanks! Hope you like it
@hom01
@hom01 2 жыл бұрын
The best Pytorch tutorial online, I love how you explained the concepts using simple example and built on each concept one step at a time
@Vedranation
@Vedranation 3 ай бұрын
by FAR the best, most complete and comprehensible tutorial for pytorch I've come across
@victorpalacios1747
@victorpalacios1747 3 жыл бұрын
This is probably one of the best tutorials I've ever seen for pytorch. Thank you so much.
@patloeber
@patloeber 3 жыл бұрын
Thanks a lot! Glad you enjoy the course
@terryliu3635
@terryliu3635 7 ай бұрын
The best hands-on tutorial on PyTorch on KZbin! Thank you!
@SéhaneBD
@SéhaneBD Жыл бұрын
This is the best course on this topic I've seen so far. It is perfect when you want to understand what you're doing and the way things are brought is very pedagogic.
@ilkerbishop4217
@ilkerbishop4217 3 жыл бұрын
Best pytorch video tutorial I have found on entire internet. Also the codes are published. Just awesome
@patloeber
@patloeber 3 жыл бұрын
thanks a lot :)
@emrek1
@emrek1 3 жыл бұрын
Thanks a lot for the low level explanations. At 1:01:47 when you dot product the array turns into a single scalar. So mean() returns that number(the sum), not average. When you fix it you get the exact same results as with pytorch's implementation in 1:12:00
@phi6934
@phi6934 3 жыл бұрын
What is the correct expression of the gradient that gives the same result?
@emrek1
@emrek1 3 жыл бұрын
@@phi6934 I don't remember the details right now, but just dividing the expression with the size of the tensor must do the work. In the expression put smt like .../len(x) instead of .mean()
@phi6934
@phi6934 3 жыл бұрын
@@emrek1 yup that works thanks
@xaiver097zhang8
@xaiver097zhang8 3 жыл бұрын
I found that problem too, Thanks bro!
@spkt1001
@spkt1001 3 жыл бұрын
Thanks for the awesome course! The material is extremely well curated, every minute is pure gold. I particularly liked the fact that for each subject there is a smooth transition from numpy to torch. It's perfect for someone who wants a quick and thorough deeplearning recap and get comfortable with hands-on pytorch coding.
@ciscoserrano
@ciscoserrano 3 жыл бұрын
The man the myth the LEGEND returns with the best video of all time. 💪🏻 GREAT JOB and THANK YOU! ❤️
@patloeber
@patloeber 3 жыл бұрын
Thank you :)
@yan-jieli3475
@yan-jieli3475 2 жыл бұрын
On 4:14:00, I think you should use the ground truth as the labels rather than the predicted (line 130). Because the PR curve use the ground truth and predicted score to paint
@rickyyve9758
@rickyyve9758 2 жыл бұрын
at 1:01:41 he uses np.dot and when it should be np.multiply, that will make it consistent with the pytorch implementation. By doing np.dot, the items are multiplied and summed leaving just one value to which the mean function is applied, so the reason the numpy version get to 0 loss quicker is the gradient is not being averaged correctly.
@patloeber
@patloeber 2 жыл бұрын
thanks for pointing this out!
@li-pingho1441
@li-pingho1441 2 жыл бұрын
The best PyTorch tutorials I've ever watched.
@iandanforth
@iandanforth Жыл бұрын
In the Gradient Descent and Training Pipeline sections, the presenter glosses over why it takes 5x more training steps to converge. There are a couple factors: - Autograd is less aggressive than the manual gradient calculation, effectively lowering the learning rate (you can go all the way up to 0.1 after you move to torch and autograd) - nn.Linear() includes a bias by default and a non-zero initialization of the weights, making it not a direct comparison. You can get much closer by adding `bias=False` to the model initialization and by zeroing out the weigth with `model.weight.data.fill_(0.0`
@leo.y.comprendo
@leo.y.comprendo 3 жыл бұрын
When you explained backprop, I felt like I finally saw the light at an endless tunnel
@patloeber
@patloeber 3 жыл бұрын
hehe, happy to hear that!
@FreePal334
@FreePal334 2 жыл бұрын
OMG, you are an amazing teacher! Finally, I can grasp PyTorch and start building stuff. thank you so much
@danyalziakhan
@danyalziakhan 3 жыл бұрын
One of the best PyTorch tutorial series on KZbin :)
@genexu520
@genexu520 3 жыл бұрын
Ten-soooor and Inter-ference are the best of the class!
@brydust
@brydust 3 жыл бұрын
If z is a scalar then z.backward() is defined (and I understand the computation), while if z is not a scalar then z.backward() is not defined unless you provide appropriate inputs. However, it was not entirely clear to me what computation is occurring when we do z.backward(x) for example (where x is appropriate). This subject matter is around 33:00.
@HamzaRobotics
@HamzaRobotics 2 жыл бұрын
Same happened with me
@abhishekmann
@abhishekmann Жыл бұрын
What is happening is that PyTorch is assuming that you have provided the intermediate gradients i.e. (dLoss/dz), then using these intermediate gradients PyTorch is able to compute the gradients further downstream and backward step is successful.
@priyalakshmiprasad9726
@priyalakshmiprasad9726 3 жыл бұрын
This KZbin video is the best tutorial for pytorch out there.Thankyou so much!
@patloeber
@patloeber 3 жыл бұрын
Wow, thanks!
@resoluation345
@resoluation345 Жыл бұрын
This vid quality is ridiculously high, THANK YOU
@Marcos61783
@Marcos61783 2 жыл бұрын
Your course is great! Congratulations! I just had to do a small correction in your code in part "13. Feed Forward Net" so that I could run it on GPU. It was necessary to add the "device" (that was preciously declared) as an argument in the nn.Linear function. Without this detail it is not possible to run the code in GPU. class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, n_classes, device): super(NeuralNet,self).__init__() self.l1 = nn.Linear(input_size, hidden_size, device=device) self.relu = nn.ReLU() self.l2 = nn.Linear(hidden_size, n_classes, device=device) def forward(self, x): out = self.l1(x) out = self.relu(out) out = self.l2(out) return out
@ceesh5311
@ceesh5311 Жыл бұрын
Merci Beaucoup
@jeffkirchoff14
@jeffkirchoff14 2 жыл бұрын
Here's the best channel for data science and ML
@giovanniporcellato1171
@giovanniporcellato1171 2 жыл бұрын
Best tutorial on pytorch I've come across.
@shatandv
@shatandv 3 жыл бұрын
Patrick, you're a legend. Thank you so much for this tutorial. Now on to more advanced stuff!
@patloeber
@patloeber 3 жыл бұрын
thanks a lot!
@yoloswag6242
@yoloswag6242 3 жыл бұрын
Came for pytorch, stayed for the accent! TENZSOoooOR 😎
@patloeber
@patloeber 3 жыл бұрын
haha :D
@皇甫承佑-x5j
@皇甫承佑-x5j 3 жыл бұрын
the most useful video I have ever watched
@patloeber
@patloeber 3 жыл бұрын
happy to hear that!
@jiecao9825
@jiecao9825 2 жыл бұрын
Thank you Python Engineer! This is the best tutorial video I've ever seen about pytorch.
@xhinker
@xhinker 2 жыл бұрын
This is the best Pytorch tutorial ever, thanks you!
@ChowderII
@ChowderII 2 жыл бұрын
If you guys get an error on GPU at around 3:13:50, saying there is two devices, make sure you do model.to(device)
@tljstewart
@tljstewart 2 жыл бұрын
Update: Note a subtle detail, if in with torch.no_grad() you use w = instead of w -= a new w variable will be created with requires_grad = False, which is fixed by w.requires_grad = True Original: Using pytorch 1.11, and go figure @1:11 w.grad.zero_() errors, instead I had to put w.requires_grad = True
@jonesen4395
@jonesen4395 2 жыл бұрын
Thanks a lot, this tutorial helped me tremendously with my bachelors thesis
@haichen8132
@haichen8132 2 жыл бұрын
thank u for your patience!
@FaizanAliKhan-me9xj
@FaizanAliKhan-me9xj Жыл бұрын
Dear with apologies kindly notice, At timestamp 1:12:05 make a correction in stating, that the backprop grad was not correct, Actually the numerical one was not correct. Because np.dot is computing a single number and then taking mean is the same number, instead use 2*x/4 in np.dot(2*x,(Y_pred-Y).mean()) to correct your numerical gradient. Using np.dot(2*x/4,(Y_pred-Y)) will produce same result as back propagated result. Mean will be usefull when W and X are matrices. Thank you
@xz3642
@xz3642 2 жыл бұрын
This is the best tutorial on PyTorch
@tanakanaoshi4769
@tanakanaoshi4769 2 жыл бұрын
Basic operations we can do, so x and y equals torch. so let's print x and y. So we do simple addition for example
@dansuniverse9642
@dansuniverse9642 3 жыл бұрын
I have just finished the whole tutorial as a refresher. Everything is so much clearer now. Thanks.
@NguyenHoang-wx4ym
@NguyenHoang-wx4ym 2 жыл бұрын
I followed all courses and this helps me a lot. Thanks a ton
@Hiyori___
@Hiyori___ 11 ай бұрын
this video was super helpful and clear, I watched everything up until transfer learning, ty so much
@duynguyen4154
@duynguyen4154 3 жыл бұрын
Such a clear and comprehensive tut for Pytorch!
@patloeber
@patloeber 3 жыл бұрын
glad you like it :)
@geezer2867
@geezer2867 3 жыл бұрын
unbelievably excellent free tutorial course! Thank you!
@patloeber
@patloeber 3 жыл бұрын
Glad it was helpful!
@thechrism2249
@thechrism2249 2 жыл бұрын
This is amazing! It was fun to follow along and I feel like I am able to try pytorch on some projects now. Thank you 😍
@jennysun5777
@jennysun5777 3 жыл бұрын
I've taken a graduate course in deep learning and neural, and have watched other tutorials here and there, but this is by far the most helpful one. Granted, all the previous materials have probably contributed, but the way you teach is unparalleled!
@patloeber
@patloeber 3 жыл бұрын
thank you so much! glad you like it :)
@TorontoWangii
@TorontoWangii 2 жыл бұрын
Best course on pyTorch tutorial, thanks!
@goelnikhils
@goelnikhils Жыл бұрын
Amazing and Comprehensive coverage of PyTorch. Amazing Video. Thanks a lot
@schlingelgen
@schlingelgen Жыл бұрын
2:59:00 -> Starting with PyTorch 1.13 examples.next() is no longer valid. New syntax is: next(examples)
@HeadshotComing
@HeadshotComing 2 жыл бұрын
Man this is pure gold, thank you so much!
@nvsabhishek7356
@nvsabhishek7356 2 жыл бұрын
Thank you very much! literally the best place to learn pytorch
@xhinker
@xhinker 2 жыл бұрын
I finished the whole video, again, thank you so much!
@AliRashidi97
@AliRashidi97 2 жыл бұрын
best pytorch tutorial ever
@wisdomtent
@wisdomtent 3 жыл бұрын
This tutorial is supppppppppppper great! The best deep learning tutorial I've ever watched. Thank you so much. I enjoined the tutorial that I didn't want it to stop! I look forward to seeing more great videos like this from this channel
@patloeber
@patloeber 3 жыл бұрын
Awesome, thank you!
@aberry24
@aberry24 2 жыл бұрын
Nice tutorial ! @1:11:40 at line # 37. Instead of using "w -= learning_rate * w.grad" , I used expanded form "w = w - learning_rate * w.grad" and thought it would be same. But in this case 'w.grad' return 'None'. w.require_grad is False and hence error. Though "w -= learning_rate * w.grad" is same as "w.data = w.data - learning_rate * w.grad". It seems torch Tensor ( with require_grad True) have some overridden "__iadd__" implementation.
@Darkspell1947
@Darkspell1947 Жыл бұрын
unsupported operand type(s) for *: 'float' and 'builtin_function_or_method' got this error on that line. any help please
@haiyangxia9793
@haiyangxia9793 3 жыл бұрын
Cool, really a very nice course, thanks for your effort to make it free online!!!
@patloeber
@patloeber 3 жыл бұрын
Glad you enjoyed it!
@zechenzhang5891
@zechenzhang5891 2 жыл бұрын
Thank you so much, if I got a job by watching this, I want to make a donation.
@tschalky
@tschalky 2 жыл бұрын
Absoulte top quality videos! Thank you very much and may you go on forever
@MR_AI_59
@MR_AI_59 2 жыл бұрын
basic explanation about autograd was great
@peddivarunkumar
@peddivarunkumar 3 жыл бұрын
Perfect tutorial for a beginner!!!!!!!!
@patloeber
@patloeber 3 жыл бұрын
Glad you think so!
@qasimbashir1007
@qasimbashir1007 2 жыл бұрын
41:01 Please change torch.optim.SGD(weights,lr=0.01) to torch.optim.SGD([weights],lr=0.01), here wights are passed as array
@uniZite
@uniZite 2 жыл бұрын
Super good tutorial, this really made my day - many thanks !!! In the 05_gradients_torch, the difference in results from 05_gradients_numpy is because the derivative function should return 1/N * np.dot(2*x, y_pred-y) where N = 4. Then the results are exactly equal.
@devadharshan6328
@devadharshan6328 3 жыл бұрын
Thanks for Ur help I'm able to learn many new things . Keep up this work . Thank you
@patloeber
@patloeber 3 жыл бұрын
Glad to hear that!
@zhaodaye3560
@zhaodaye3560 3 жыл бұрын
1:12:09 It's because the gradient in your formula is not correct, not because pytorch's backpropogation calculation. You should put the ".mean()" into the brackets of "np.dot()".
@sirnate9065
@sirnate9065 Жыл бұрын
Someone has probably mentioned this already, but on line 23 at 1:04:08 .mean() is not doing anything since taking the dot product already returned a scalar. This is just dividing by one. Instead, you should be dividing by len(x) or len(y), or there may be another more efficient way to get the same result.
@neotodsoltani5902
@neotodsoltani5902 Жыл бұрын
a probable mistake: Leaky ReLU isn't used for solving the problem of vanishing gradient problem but Dead Neurons problem. Which can happen when you use ReLU activation functions.
@hankystyle
@hankystyle 3 жыл бұрын
Thank you for your excellent tutorial! It helps my homework and research a lot!!
@alexandreruedapayen6528
@alexandreruedapayen6528 2 жыл бұрын
That is an excellent course. Thank you Python Engineer
@saravanannatarajan6515
@saravanannatarajan6515 2 жыл бұрын
Great tutorial! one small point regarding CNN - CIFAR10 While calculation accuracy , its better to use for i in range(len(labels)): than for i in range(len(lbatch_size)): since if last set of batch_size less than original batch_size given then it will throw index bound error
@furia151
@furia151 Жыл бұрын
amazing tutorial man! thank you so much !!! this is just the best!
@datascience3008
@datascience3008 2 жыл бұрын
This is an error I have found Time: 1:01:55 According to the equation,we actually need to find 1/N ,where N represents the number of term(here 4).According to the code,we are computing mean after converting the rest of the code to a dot product,which contains just a value.So instead of dividing with the desired value(4),we are dividing with 1.
@Jaeoh.woof765
@Jaeoh.woof765 Жыл бұрын
Dec. 1st 7:38 Dec. 2nd 1:02:30
@smooth7041
@smooth7041 8 ай бұрын
Really nice, well explained, well tested, etc.. Thanks a lot!!
@iworeushankaonce
@iworeushankaonce 3 жыл бұрын
Well done, a very smooth intro to PyTorch.
@patloeber
@patloeber 3 жыл бұрын
Glad you like it!
@giacomodonini7303
@giacomodonini7303 2 жыл бұрын
Thank you very much, this tutorial it's super useful and it's making my life better!
@ITsmapleTimexD
@ITsmapleTimexD 2 жыл бұрын
Right! It's not the backward that isn't precise as he said, if you compute by hand it is indeed -30.
@yusun5722
@yusun5722 2 жыл бұрын
Correct. The np.dot() didn't actually get the mean (but the sum). Hence the gradient is larger than the true value and the convergence is faster.
@faatemehch96
@faatemehch96 3 жыл бұрын
Thanks for the best PyTorch Tutorial 👍🏻👍🏻👍🏻
@patloeber
@patloeber 3 жыл бұрын
Glad you like it!
@Oof_the_gamer
@Oof_the_gamer 3 ай бұрын
1:24:05 this is the correct variables: rate = 0.034 # learning rate number_iterations = 769
@shihaoxu5522
@shihaoxu5522 3 жыл бұрын
The only problem with this 4.5-hour video is that it does not provide me with a convenient way to like 17 times. Thanks for the series of tutorials!
@patloeber
@patloeber 3 жыл бұрын
Haha thank you!
@fatemehmirhakimi
@fatemehmirhakimi 4 ай бұрын
Thankyou Patrick. It was a fantastic tutorial.
@rail_hail6625
@rail_hail6625 2 жыл бұрын
Finished the tutorial love it
@py2992
@py2992 2 жыл бұрын
This course is amazing !! Thanks of everythink.
@אורהארבל
@אורהארבל 2 жыл бұрын
such a brilliant course !! I thank you so much !!
@mannyc6649
@mannyc6649 Жыл бұрын
At 1:01:55 you are taking the mean of a scalar, which doesn't do anything. Since you have 4 data points only this effectively means that your learning_rate was multiplied by 4. This is the reason why it seems to work better than PyTorch: this particular case is so well behaved that to speed up is sufficient to take larger steps.
@ekaterinastamatova3835
@ekaterinastamatova3835 3 жыл бұрын
Amazing content! It helped me a lot! Thank you very much
@patloeber
@patloeber 3 жыл бұрын
Happy to hear that!
@mariyaalberdina9917
@mariyaalberdina9917 2 жыл бұрын
Very good tutorial, good job, thank you for this course!!
@eugenefrancisco8279
@eugenefrancisco8279 3 жыл бұрын
Dude this has general helped me so much. Thank you!
@patloeber
@patloeber 3 жыл бұрын
Glad to hear it!
@doeskrippsayheyguyshowsitg578
@doeskrippsayheyguyshowsitg578 2 жыл бұрын
Wanna explore a package like pytorch? run print(dir(torch)) or any other package/module and you'll get an interesting printout of available functions.
@byiringirooscar321
@byiringirooscar321 Жыл бұрын
friend please how can I fix this '_MultiProcessingDataLoaderIter' object has no attribute 'next'
@byiringirooscar321
@byiringirooscar321 Жыл бұрын
got we have to wrap next datatiter = iter(dataloader) data = next(datatiter) features, labels = data print(features, labels)
@fatemehmirhakimi
@fatemehmirhakimi 4 ай бұрын
Thankyou Patric for your Fantastic tutorial. ☺
@ashishrahul4692
@ashishrahul4692 2 жыл бұрын
How is it that for a feed forward neural network we zero the gradients first before computing gradients and updating weights @3:08:35, whereas in the case of linear/logistic regression, we zero the gradients after computing them and updating the weights @1:36:19 @1:52:41. Intuitively, this should not make any difference, but i wanted to confirm if that truely is the case. Is this just a nomenclature thingy?
@saikumarreddyyeddula5043
@saikumarreddyyeddula5043 2 жыл бұрын
Wow. This course is awesome. An end to end of everything. I was wondering why I need to learn about Tensorboard and JSON files (other series) for using Torch. This was very useful to me.
@johnyou5671
@johnyou5671 10 ай бұрын
Thanks for this incredible resource. FYI I believe the gradient function computed at 1:01:38 is incorrect. I'm pretty sure it should be: def gradient(x, y, y_predicted): return ((y_predicted-y)*2*x).mean()
@GungKoala
@GungKoala 2 жыл бұрын
thank you for the great video. I learnt so much from you!
Building a Neural Network with PyTorch in 15 Minutes | Coding Challenge
20:34
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 743 М.
How Many Balloons To Make A Store Fly?
00:22
MrBeast
Рет қаралды 147 МЛН
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 31 МЛН
Thank you Santa
00:13
Nadir Show
Рет қаралды 35 МЛН
MLOps Course - Build Machine Learning Production Grade Projects
3:01:03
freeCodeCamp.org
Рет қаралды 323 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 104 М.
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 3,8 МЛН
What is PyTorch? (Machine/Deep Learning)
11:57
IBM Technology
Рет қаралды 34 М.
Hot Dog or Not Hot Dog - Convolutional Neural Network Course for Beginners
1:27:43
The Oldest Unsolved Problem in Math
31:33
Veritasium
Рет қаралды 12 МЛН
TensorfFlow 2 Beginner Course (3 HOURS)
3:18:48
Patrick Loeber
Рет қаралды 15 М.