Equivariant Neural Networks | Part 1/3 - Introduction

  Рет қаралды 12,190

DeepFindr

DeepFindr

Күн бұрын

Пікірлер: 23
@ajwadakil6892
@ajwadakil6892 Жыл бұрын
Honestly this is one of the best introduction to the topic. A lot of the lectures directly dive / start with group theory and people without relevent background immediately loose interest seeing the mathematical concepts and axioms. This channel deserves more subs and views ❤❤
@sari54754
@sari54754 9 ай бұрын
You have a good ability to explain difficult subjects easily. There are tutorial videos for Geometric Deep Learning from Bronstein(who organized GDL tutorial school with Cohen, Burna etc) which includes this concept, but their tutorial needs more math background. Excellent.
@DeepFindr
@DeepFindr 9 ай бұрын
Thank you!!
@jangradkowski2875
@jangradkowski2875 Жыл бұрын
I love your content, and often come back to recall important concepts. Thank you very much, and I hope that soon I will be able to afford to buy you a coffee.
@DeepFindr
@DeepFindr Жыл бұрын
Thank you, happy that it is useful :)
@Blueshockful
@Blueshockful Жыл бұрын
i've been looking at this topic these days, super helpful to wrap my head around better!
@DeepFindr
@DeepFindr Жыл бұрын
Awesome :)
@imolafodor4667
@imolafodor4667 Жыл бұрын
hi, where the lower complexity of the network is stated as an advantage.. complex in what sense? my definition of complex network means there are more filters/neurons/weights to learn.. so how would equivariance reduce connections? those are fixed by our hand-crafted layer topology, no?
@spaceflame30
@spaceflame30 Жыл бұрын
Wonderful video, the examples are incredibly intuitive.
@Nocturnal813
@Nocturnal813 Жыл бұрын
Awesome as always
@chinmay.prabhakar
@chinmay.prabhakar Жыл бұрын
Is it possible to share the slides as well?
@DeepFindr
@DeepFindr Жыл бұрын
Sure! Please send me a mail to deepfindr@gmail.com and I will attach them :)
@chinmay.prabhakar
@chinmay.prabhakar Жыл бұрын
@@DeepFindr Done. Hope to hear back from you soon :)
@user-wr4yl7tx3w
@user-wr4yl7tx3w Жыл бұрын
Really interesting content.
@gapsongg
@gapsongg Жыл бұрын
Clean as fuck. Thank you very much. Nice visuals nice explanations. Easy to follow
@mathador4467
@mathador4467 Жыл бұрын
Fantastic video, thx
@shaz-z506
@shaz-z506 Жыл бұрын
Nice video, could you please also create video of capsule networks, through caps-net you can also achieve equivariance in images.
@DeepFindr
@DeepFindr Жыл бұрын
Yes I'll also include them :)
@sbhattacharyya5932
@sbhattacharyya5932 Жыл бұрын
Awesome video!!
@Falangaz
@Falangaz Жыл бұрын
Fantastic video thank you so much
@james_ph4233
@james_ph4233 Жыл бұрын
I love this video! thank you!
@tilkesh
@tilkesh Жыл бұрын
Thx
Equivariant Neural Networks | Part 2/3 - Generalized CNNs
15:57
How Strong is Tin Foil? 💪
00:25
Brianna
Рет қаралды 71 МЛН
У вас там какие таланты ?😂
00:19
Карина Хафизова
Рет қаралды 27 МЛН
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 8 МЛН
[COMSOC 68] Nicholas Teh and Jamie Tucker-Foltz
1:06:46
COMSOC Video Seminar
Рет қаралды 55
05 Imperial's Deep learning course: Equivariance and Invariance
19:27
Bernhard Kainz
Рет қаралды 11 М.
The Essential Main Ideas of Neural Networks
18:54
StatQuest with Josh Starmer
Рет қаралды 982 М.
A Survey on Graph Neural Networks for Time Series
1:14:55
Temporal Graph Learning
Рет қаралды 5 М.
Equivariant Models | Open Catalyst Intro Series | Ep. 6
22:53
Open Catalyst Project
Рет қаралды 6 М.
The future of AI looks like THIS (& it can learn infinitely)
32:32
Understanding Graph Attention Networks
15:00
DeepFindr
Рет қаралды 86 М.
Geometric Deep Learning: GNNs Beyond Permutation Equivariance
1:25:12
Petar Veličković
Рет қаралды 12 М.