Equivariant Neural Networks | Part 3/3 - Transformers and GNNs

  Рет қаралды 6,409

DeepFindr

DeepFindr

Күн бұрын

Пікірлер: 11
@IMdigitalworks
@IMdigitalworks 9 ай бұрын
Hey, thank you for the video. Do you know some resources about SE(3) invariant gnns for points clouds? That is, I would like a gnn to encode local geometries of point neighborhoods that be would invariant under SE(3) (not equivariant).
@chenweilong2505
@chenweilong2505 Жыл бұрын
Incredible video. Awesome! Thanks!
@v_pryadchenko
@v_pryadchenko Жыл бұрын
Where could I find links to parts 1 and 2?
@julienblanchon6082
@julienblanchon6082 Жыл бұрын
Part1: kzbin.info/www/bejne/aJOzkH6rd9eLicU Part2: kzbin.info/www/bejne/qGHbqqubaJaEnbc
@faiazahsan6774
@faiazahsan6774 Жыл бұрын
Your GNN video serise is really helpful for a beginer like me. Thank you very much. p.s: Any chance you can make a project video on Supply Chain Risk Detection using GNN?
@prajwol_poudel
@prajwol_poudel Жыл бұрын
Do you have a background in mathematics? coming from a non-mathematics, non-computer engineering/ CS background, the mathematics I've learned so far feels like cave-man mathematics when seeing all the fancy mathematics in the video, can't even imagine trying to read any of the paper on my own. How can someone without a good background in mathematics navigate/dive into such topics which demands high mathematical rigour?
@DeepFindr
@DeepFindr Жыл бұрын
Hi! Not directly mathematics, but computer science. Yeah I agree I doesn't look so trivial but I just read different articles about it until I mostly understood it. But I'm far from being an expert and there are still many nuances I didn't fully understand. Took me ages however ;-) This area is certainly one of the math heavier ones. I think given enough time it is possible to understand such papers, but the question is if it's really worth to invest it. The next videos will be more comprehensible again :)
@zeyutang2084
@zeyutang2084 Жыл бұрын
@@DeepFindr Hi thanks for the amazing series! I am from an engineering background, just wondering if you could recommend any books or lectures for group theory since I would like to develop a more rigorous mathematical understanding of the topic. Many thanks
@IgorItkin
@IgorItkin 7 ай бұрын
Thanks man!
@tilkesh
@tilkesh Жыл бұрын
Thx
@v_pryadchenko
@v_pryadchenko Жыл бұрын
Cool!
Equivariant Neural Networks | Part 1/3 - Introduction
18:51
DeepFindr
Рет қаралды 12 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 26 МЛН
Triple kill😹
00:18
GG Animation
Рет қаралды 18 МЛН
Who's spending her birthday with Harley Quinn on halloween?#Harley Quinn #joker
01:00
Harley Quinn with the Joker
Рет қаралды 25 МЛН
PIZZA or CHICKEN // Left or Right Challenge
00:18
Hungry FAM
Рет қаралды 16 МЛН
Resolution of forces 19
2:59
VTU CIVIL ENGINEERING EDUCATION VIDEOS 1st Year
Рет қаралды 7
Equivariant Models | Open Catalyst Intro Series | Ep. 6
22:53
Open Catalyst Project
Рет қаралды 6 М.
Understanding Graph Attention Networks
15:00
DeepFindr
Рет қаралды 86 М.
Tess Smidt: "Euclidean Neural Networks for Emulating Ab Initio Calculations and Generating Atomi..."
52:20
Institute for Pure & Applied Mathematics (IPAM)
Рет қаралды 3,8 М.
How might LLMs store facts | Chapter 7, Deep Learning
22:43
3Blue1Brown
Рет қаралды 744 М.
Dendrites: Why Biological Neurons Are Deep Neural Networks
25:28
Artem Kirsanov
Рет қаралды 236 М.
Converting a Tabular Dataset to a Graph Dataset for GNNs
15:22
Deep learning with dynamic graph neural networks
15:08
Jacob Heglund
Рет қаралды 13 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 372 М.
Equivariant Neural Networks | Part 2/3 - Generalized CNNs
15:57
When u fight over the armrest
00:41
Adam W
Рет қаралды 26 МЛН