sqrt(1+sin(x))y = cos(x) sqrt(1+sin(x))= cos(x)/y y' = -1/2 cos(x)/y and we have separable differential equation y'+tan(x)y = -1/2sec(x)y^3 Bernoulli differential equation Your function is particular solution of these differential equations
@francaisdeuxbaguetteiii7316 Жыл бұрын
I hope you don’t forget me when you eventually do reach 250k :)
@PrimeNewtons Жыл бұрын
You are unforgettable ❤️
@francaisdeuxbaguetteiii7316 Жыл бұрын
@@PrimeNewtons you too mr newtons ❤️, I watch every video for a reason you know
@utuberaj60 Жыл бұрын
Very nice practice for the Quoteint Rule. However, we can do it faster by using the trig identity Cos X =Sqrt(1-Sin^2 X) = Sqrt{ (1-Sin X)* (1+Since)} which makes the expression= Sqrt (1-Sin X). Differentiating this is very simple and gets to the answer in one step.