Square-root of a matrix
13:51
Күн бұрын
A long road to the limit
21:24
Күн бұрын
a! b! = a! + b! + c!
14:38
Күн бұрын
A Vieta Problem
16:43
14 күн бұрын
A puzzle or a system of equations?
10:34
Find the closest integer
14:57
21 күн бұрын
Find P(x)
15:07
21 күн бұрын
Find the limit
6:16
28 күн бұрын
Find the limit
10:11
Ай бұрын
Determine a and n
17:38
Ай бұрын
Divisibility by 24
12:35
Ай бұрын
GCF of 4^8 -1 and 8^12 -1
12:43
The maximum possible maximum
12:53
Find all positive integer n
16:49
A factorial exercise 💪
12:10
HCF of (x^91 + 1) and (x^65 + 1)
12:22
Find the sum of coefficients
5:07
Find all x
14:53
2 ай бұрын
Find all real pairs (x,y)
14:38
2 ай бұрын
Find all real x
10:48
2 ай бұрын
A fun proof for an integer
10:31
2 ай бұрын
a * b = ab + a + b
21:39
2 ай бұрын
Estonian Math Olympiad
13:36
2 ай бұрын
Пікірлер
@AvneeshKumar-x4o
@AvneeshKumar-x4o 19 сағат бұрын
But the variable should approach infinity
@chriscalderon1337
@chriscalderon1337 20 сағат бұрын
I wish you we around 10 years ago when I was first tackling these kinds of problems!
@aprilmay578
@aprilmay578 20 сағат бұрын
That is so beautiful. Thanks for sharring.
@doctorb9264
@doctorb9264 20 сағат бұрын
Excellent problem and solution. Good choice of numbers too.
@opalescentmica
@opalescentmica 21 сағат бұрын
"Recreational Mathematician" I did not know there was a name for us 🧠
@opalescentmica
@opalescentmica 21 сағат бұрын
6+1+7+4=18 1+8=9 I am not surprising it breaks down to 9 the most divine in Sacred Geometry
@TasnimAhammed-y5u
@TasnimAhammed-y5u 22 сағат бұрын
love from Bangladesh 🖤
@AlexanderofMiletus
@AlexanderofMiletus 22 сағат бұрын
Just tell it no one loves it, no need to overcomplicate things.
@raphaelalexandreyensen6291
@raphaelalexandreyensen6291 23 сағат бұрын
What is the practical application of this? Like if if you quickly arrive at a number more then the number of atoms in the known universe what the hell are you even counting?
@Converge89
@Converge89 Күн бұрын
Dressed up really nicely Very sophisticated
@ingiford175
@ingiford175 Күн бұрын
What would be a good linear algebra book for self study that has the Cayley-Hamiltonian and problems such as finding square roots of matrixes?
@dieuwer5370
@dieuwer5370 Күн бұрын
Much too complicated. Let's do it differently: Let A as described in the video. Then, let X^2 = A, with X = matrix of x1...x4. Then, a1 = x1^2 + x2*x3; a2 = x1*x2 + x2*x4; a3 = x1*x3 + x2*x4; a4 = x2*x3 + x4^2. Four equations, four unknowns. Solve. Done.
@nimmyelnancwat9418
@nimmyelnancwat9418 Күн бұрын
I sent question in ur mail but no response yet from you
@stylerstudios
@stylerstudios Күн бұрын
goat.
@terryshell9045
@terryshell9045 Күн бұрын
Nice exercise!
@_PEPSISUCKS
@_PEPSISUCKS Күн бұрын
4:03 😂😂😂 I'm dead. I havent laughed that hard in a math video in a long time. Hahahaha 😆 😂 😆 But for real... I hate this problem... sometimes I wish math was easier.
@nimaalz4513
@nimaalz4513 Күн бұрын
plzzz prove Cayley-Hamilton theorem
@wannabeactuary01
@wannabeactuary01 Күн бұрын
You need to show your preferred strategy 🙂for the integral...
@jennifertate4397
@jennifertate4397 Күн бұрын
So interesting! Thanks.
@anestismoutafidis4575
@anestismoutafidis4575 Күн бұрын
x^2-2x+1=(x-1)•(x-1)=(x-1)^2 ∫ 5 -> -1 (x-1)^2•dx <=> ∫ (x-1)^3/3•dx [(5-1)^3/3- (-1-1)^3/3)•dx] 5 -> -1 [21+1/3 + 2+2/3• dx] = ∫ [24•dx]5 -> -1 By using the definition, we can calculate the summary as follows: (x^2-2x+1)=0 <=> p=2; q=1 -p/2± [(p/2)^2-q] <=> x=1 ∫ [24•dx]5-> -1=lim n->5 Σ i=1f(24i)•6•24 => Σ=24^2•6•1 = 3.456
@079sivagiriv2
@079sivagiriv2 Күн бұрын
Sir, why one of those cube root of 1 is named omega? Is there a reason for it? 🤔
@JacobHa
@JacobHa Күн бұрын
I have another idea about the proof. Let √A = k ( A + p I ) Then A = k^2 ( A + p I )^2 = k^2 (A^2 + 2pA + p^2 I) Then use Cayley-Hamilton theorem to reduce A^2 in terms of A and I, and then comparing the coefficients of A and I on both sides and then solve for k and p.
@s.nandaa
@s.nandaa Күн бұрын
Imma dance at outro
@AashaMalhi-x1z
@AashaMalhi-x1z Күн бұрын
Amazing sir this video is really help me
@ilafya
@ilafya Күн бұрын
Well said stop learning stop living
@ilafya
@ilafya Күн бұрын
Well done
@ThePayner11
@ThePayner11 Күн бұрын
Is there a formula for the nth root of the 2 x 2 matrix A?
@denniskisule8131
@denniskisule8131 Күн бұрын
Prime newtons you sound like Richard Mofe Damijo and I imagine you are a Nigerian
@hozeluii1566
@hozeluii1566 Күн бұрын
Bravo !!!!! Very good, Sir.
@angelmendez-rivera351
@angelmendez-rivera351 Күн бұрын
As pointed out by others, the proof near the end of the video is incorrect, and completely lacking in rigor. However, I do not blame you for this mistake, because as it happens, this Diophantine equation is actually an unsolved open problem in number theory, and there have been many dozens of research papers published on this question, but with no success in solving it. The problem here is that it is possible that a = b. To discard the possibility of other solutions besides (3, 3, 4) existing, one must discard a = b for a > 3. This enables proving that a! = sqrt(c! + 1) + 1, so for c > 4, c! + 1 must be a perfect square. This leads to the auxiliary Diophantine equation c! + 1 = d^2, known as Brocard's problem, which you can search for yourself online and see that this is indeed an unsolved problem, as there has never been a proof published to correctly demonstrate that there are no other solutions besides c = 4, c = 5, and c = 7. c = 5 and c = 7 do not lead to new solutions for a!, but as it has not been proven that there do not exist any other such c!, there is also no proof that there are no other a! satisfying a! = sqrt(c! + 1) + 1. These comments in the comment section do attempt to prove that there exist no other such a!, but they are all incorrect and make mistakes which have mostly been pointed out by those who replied to said comments.
@mathunt1130
@mathunt1130 Күн бұрын
You missed a trick. Use the Cayley-Hamiltonian theorem again, X^2-tr(X)X+det(X)I_2=0. Note that taking the trace is a LINEAR operation. Take the trace to obtain: tr(X^2)-(tr(X))^2+2det(X)=0. Note that X^2=A, and det(X)=sqrt(det(A)) and rearrange to get: (tr(X))^2=tr(A)+2sqrt(det(A)), take square roots to get tr(X)=sqrt(tr(A)+2sqrt(det(A))). I think that this is slicker.
@Hirodal
@Hirodal Күн бұрын
Thanks!
@nedmerrill5705
@nedmerrill5705 Күн бұрын
It's apparent that A can't be singular for this to work, right? You can't have a square root of a singular matrix, is that right?
@argkourpas1
@argkourpas1 Күн бұрын
Congrats my friend. Like the blackboard and working with chalk. You 're a brilliant example for all the teachers...!!
@mathunt1130
@mathunt1130 Күн бұрын
Note that tr(A) and dat(A) are invariants of the matrix. So I suspect that there is a topological derivation of this result which is quite simple in application.
@Young_Ban
@Young_Ban Күн бұрын
16
@YusufuDaudaKanu
@YusufuDaudaKanu Күн бұрын
Why can't you use your own name rather than Newton's?
@cisienx9764
@cisienx9764 Күн бұрын
you can say n2^n + 1 is a square so by (a+b)^2 we can say a^2 + 2a = n2^n let a be 2^x n2^n = 2^2x + 2*2^x n2^n = 2^2x + 2^(x+1) n2^n = 2^(x+1) [ 2^(x-1) + 1] n2^n = [ 2^(x-1) + 1] * 2 ^ (x+1) so here if we assume x + 1 = n then 2^(x-1) +1 should also be equal to n x+1 = 2^(x-1) + 1 x = 2 ^ (x - 1) 2x = 2 ^ x how here you can either make an educated guess that x = 1 and x = 2 satisfies solution or you can solve for x with some rearrangement and lambert w function so if x = 1 then n = x +1 aka n = 2 and for x = 2 ; n = 3 or you can use other equation also for finding out n If any one is reading this please let me know is there any problem with my solution as i am not from maths background
@clumsedy11
@clumsedy11 Күн бұрын
Tetration is literally- so large, I can see why he chose a base of 2 for the example. ²2 equals to 4, but ³3 already equals to 7,625,597,484,987.
@CaioBrutusLeoni
@CaioBrutusLeoni Күн бұрын
Very good professor!
@rip_BWRoblox
@rip_BWRoblox Күн бұрын
Thank you for teaching me this one, now imma trick my classmates hehe😅
@ruud9767
@ruud9767 Күн бұрын
Superb! For linear algebra I recommend Prime Newtons.
@pow3rofevil
@pow3rofevil Күн бұрын
Muy buenos videos amigo, saludos
@luisdanielmartinezhernande5715
@luisdanielmartinezhernande5715 Күн бұрын
Hi, I'm from Mexico, and I´m studying computing engeneer, and this kind of exercises caught my attention, this formula or this topic I've never seen on my Linear Algebra course, and I would like to know how can I find this theme or if this is particularly on a Lineal Algebra Course, Very nice video i learned something new. Thanks
@padla6304
@padla6304 Күн бұрын
Вы хорошо объясняете и всё понятно кроме одного как вычислить W? поскольку у меня на калькуляторе есть кнопка [ln], но нет кнопки [W]
@ockham1963
@ockham1963 Күн бұрын
Outstanding. Best maths tutor by far.
@mathunt1130
@mathunt1130 Күн бұрын
The squareroot of a matrix is a SPINOR!!!!!
@GodwinSichone
@GodwinSichone Күн бұрын
You have made my work easier sir 😁😉
@Sarah-PeaceFalaju
@Sarah-PeaceFalaju Күн бұрын
Thank you so much. God bless you 🙏❤ You're a man of your word. Thank you for the likes 😊