Describing rotation in 3d with a vector

  Рет қаралды 151,158

Khan Academy

Khan Academy

Күн бұрын

Пікірлер: 45
@neopalm2050
@neopalm2050 7 жыл бұрын
It's official. Khanacademy has been graced with the presence of a pi creature. Grant has fully joined team Khan.
@Rocky-me5cw
@Rocky-me5cw 6 жыл бұрын
π creatures are now on khan academy too. #πFever
@jvcmarc
@jvcmarc 6 жыл бұрын
3blue1brown is slowly taking over KhanAcademy
@cyancoyote7366
@cyancoyote7366 6 жыл бұрын
Nothing wrong with that. Sal, if you're reading this, you're awesome as well.
@frognik79
@frognik79 6 жыл бұрын
Came here (and elsewhere) after watching a Quaternions numberphile video saying you need 4 dimensions to describe 3 dimensional rotation, 1 scalar + 3 vector. The right hand rule + vector magnitude is a really smart idea for getting the scalar inherently.
@FernandoVinny
@FernandoVinny 7 жыл бұрын
This guy is from 3Blue1Brown
@janApen
@janApen 7 жыл бұрын
Fernando Gonzaga yep he talks about it all the time.
@anujarora0
@anujarora0 6 жыл бұрын
Matthew Ripley ikr
@DavidsKanal
@DavidsKanal 6 жыл бұрын
This guy IS 3Blue1Brown
@ONS0403
@ONS0403 5 жыл бұрын
The pi creature coupled with Grant's voice literally made me think I was watching 3blue1brown videos. I didn't realize this was Khan until the video ended.
@namitanene3531
@namitanene3531 3 жыл бұрын
The pi creature looks so cute when its rotating 😣✊
@zts99
@zts99 8 жыл бұрын
Great videos. They are wonderful conceptual understandings for the intuition behind the mechanics. Are you the same mind behind 3blue1brown ? voice and style are nearly identical. And if yes, when did you jump on the Khan team ?
@3blue1brown
@3blue1brown 8 жыл бұрын
Yup! I came on around October, but up until recently I had been focussing on non-video content.
@mohammedzerrak5639
@mohammedzerrak5639 7 жыл бұрын
You are the best man , very intuitive and clear
@dqrksun
@dqrksun 3 жыл бұрын
@@3blue1brown Whoa
@ChatGPT-
@ChatGPT- 8 ай бұрын
​​@@3blue1brown I was not sure it's you .. until I saw pi creature rotating on the screen 😂🤨🤨 Thankyou you very much for the videos 😊
@vigneshwarm
@vigneshwarm 5 жыл бұрын
Ah! I can finally see the pi creatures in Khan Academy.
@stutteringcris468
@stutteringcris468 2 жыл бұрын
Very important for game development!
@janApen
@janApen 7 жыл бұрын
I love you! ... I.. I mean I love your math.
@huyngo1630
@huyngo1630 6 жыл бұрын
That convention resembles the right hand rule in electromagnetic.
@Magnawulf
@Magnawulf 6 жыл бұрын
Is it really possible to describe all rotations in 2D with one number? Aren't you also forgetting about the center of origin of the rotation? That's not convention, it's something that can vary. It doesn't seem possible to map every point to it's rotated image using one number (theta in your case), you would need a two dimensional number like a vector right? Similarly wouldn't you need a 3 dimensional number to talk about rotation in 3d?
@kangalio
@kangalio 6 жыл бұрын
Rotation around some point = Rotation around center + Moving in a circle
@descai10
@descai10 6 жыл бұрын
The position is a 2-dimensional vector, the rotation is a single number.
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
Center of rotation can be translated into origin then retranslated back after rotation, as for. In 2D rotation you can use 1 angle variable using rotation matrix, so does with 3D rotation (but it's fixed to an axis rotation) . If you want a fluid and flexible rotation in 3D (that can form a sphere and not gonna need center of rotation) you would need what's called Quarternion, it's a 4D number (consisting of 3 imaginary number + 1 real number; no angle variable needed).
@roygalaasen
@roygalaasen 4 жыл бұрын
I know Grant has been doing videos with Khan Academy before, and I was sure that I was watching Khan Academy, but when the pi figure appeared spinning around on my screen I had to double check that I hadn’t actually stumbled onto 3b1b channel instead.
@TheAbdelwahab83
@TheAbdelwahab83 6 жыл бұрын
thanks; but where are next videos???
@shenelf240
@shenelf240 4 жыл бұрын
it is like that curl3D(x,y,z) = (curl2D(yz),curl2D(zx),curl2D(xy))
@joschistep3442
@joschistep3442 2 жыл бұрын
1:53 so now it's official. It really doesn't matter.
@diqnu
@diqnu 4 жыл бұрын
@Khan Academy: I´m confused with one thing: We are able to describe a rotation (spin) by a vector of course. But adding two of them will result in one new single-axis spin representation. Though: This can´t be right: A 1-Hz-spin around the x-axis combined with a 10-Hz-spin around z-axis is definitely not the same as single-axis rotation around (1, 0, 100), is it? So, spin vestors aren´t real vectors in the sense of a vector space? How are multi-axes spins descibed mathematically then?
@feiwang9892
@feiwang9892 6 жыл бұрын
ha this π comes from the videos from 3 blue 1 brown =D
@layer1087
@layer1087 2 жыл бұрын
Surprised to see 3blue1brown here 😍
@giridharpalvai7516
@giridharpalvai7516 4 жыл бұрын
Rotation is always up word direction ?
@giridharpalvai7516
@giridharpalvai7516 4 жыл бұрын
I am learning cmm machine possible to give rotation and transaction topics information
@adamroer3908
@adamroer3908 6 жыл бұрын
Thank you this was really helpful
@jj8614
@jj8614 6 жыл бұрын
I was 3 min through the video considering its 3blue1brown channel lol
@harishthethird
@harishthethird 4 жыл бұрын
A FREAKING PI CREATUREEEE
@luvley5323
@luvley5323 4 жыл бұрын
The pi creature!
@aienbalosaienbalos4186
@aienbalosaienbalos4186 3 жыл бұрын
To use a vector, you are limiting yourself to rotations in 3D, because only then is the normal of the plane of rotation a vector. Furthermore, the rotation is on a plane, why would it's definition involve a vector in a other, unrelated dimension? Which is why, in my opinion, and I think the opinion of most people that have heard of geometric algebra, it makes more sense to define the plane of rotation. To define a plane you would need 2 numbers, leaving the third number for the speed of rotation. In some contexts, an oriented plane with a magnitude is called a bivector. If you are interested, search a quick video about geometric algebra and bivectors.
@putinstea
@putinstea 2 жыл бұрын
Yo it's my boy 3blu 😄
@arnavkumar3060
@arnavkumar3060 6 жыл бұрын
We use the right hand rule every night.
@NeostormXLMAX
@NeostormXLMAX 6 жыл бұрын
Arnav Kumar what if you’re a lefty
@212_umairathar9
@212_umairathar9 5 жыл бұрын
Liar it is 3D rotation . We are not finding the direction of current
@ch.ajaysingh
@ch.ajaysingh 5 жыл бұрын
Poor π creature!
@randomstuff9960
@randomstuff9960 3 жыл бұрын
Here comes the pi creature...😃😃😃
3d curl intuition, part 1
5:50
Khan Academy
Рет қаралды 77 М.
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 200 МЛН
ТЫ В ДЕТСТВЕ КОГДА ВЫПАЛ ЗУБ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 4 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 48 МЛН
Visualizing quaternions (4d numbers) with stereographic projection
31:51
Rotations in 3D Graphics With Quaternions
8:23
Manifolds in Maryland
Рет қаралды 13 М.
How quaternions produce 3D rotation
11:35
PenguinMaths
Рет қаралды 97 М.
Euler vs Quaternion - What's the difference?
8:49
Class Outside
Рет қаралды 46 М.
How to Use Quaternions
14:20
Positive Altitude
Рет қаралды 24 М.
The Strange Physics Principle That Shapes Reality
32:44
Veritasium
Рет қаралды 6 МЛН
Solving one of the toughest Indian exam questions
21:12
Tibees
Рет қаралды 1,8 МЛН