I have taken a couple of college courses in deep learning, and the course material goes so fast that details like this are missed. This video is excellent for truly understanding those parameters of deep learning present in the many layers of CNN. I am studying for a PhD in AI/ML at Arizona State. Thank you.
@mariovrpereira Жыл бұрын
your content is fantastic and puts together some pieces that sometimes get scattered during learning. thank you so much for all your videos
@climbscience4813 Жыл бұрын
The thorough explanation is much appreciated! I think that this is not only for those with gaps in the basics, but also for people really trying to understand the details. Thumbs up!
@theping19202 жыл бұрын
this channel is underrated thanks sir for helping me through rough exams of my university. lots of love from Germany
@DigitalSreeni2 жыл бұрын
All the best
@Sehmiconductor2 жыл бұрын
Thank you for these videos. Currently I am in PGDBDA program by CDAC, Bangalore and was facing doubts in image processing section of deep learning. These videos helped me alot.
@nagabilwanth59692 жыл бұрын
Thanks for sharing the example to calculate the weights for 9 channels. This shows, you're sharing all your experience by making the video. I really appreciate it. Thank you.
@DigitalSreeni2 жыл бұрын
Glad it was helpful!
@wasiurrahaman7242 Жыл бұрын
Allah may bless you sir. I having watching your videos last 6 months, your teaching methode is so beautiful and very simple. Please make such video where we can learn from you.
@falolayusuf96849 ай бұрын
Excellent video. You are doing great! Starting from the basics really helped with understanding.
@vivek-159-icd2 жыл бұрын
Such a nice video, sir, even if the longer videos we are ready to see because the content is so beautiful. Thanks
@DigitalSreeni2 жыл бұрын
Thanks, Keep watching
@chitti99742 жыл бұрын
very informative, best explanation with code execution. Thanks a lot Mr. Sreeni
@DigitalSreeni2 жыл бұрын
You are welcome.
@maddybharathi3 жыл бұрын
Thank you very much. Beautifully explained.
@DigitalSreeni3 жыл бұрын
You are welcome!
@oroszgabi Жыл бұрын
Dear Dr. Sreeni! Excellent, as always! Could You explain how this methos works with other keras.apllications (e.g. ResNet, Inception, Xception, Mobilenet)? Are there any extra steps? Thanks for You kind answer!
@kyawnaingwin83003 жыл бұрын
Thanks you. It enlightens me how I can control transfer learning according to my needs.
@DigitalSreeni3 жыл бұрын
You are so welcome!
@ksa2011kify2 жыл бұрын
Thank you for sharing this informative video. Well done for getting to the point.🙏
@PerryBattles2 ай бұрын
Brilliant video! Question: why do we not need to update the parameter count/shape of the subsequent convolution layers if we reconfigure for a 1-channel image? Wouldn't those other convolution layers also have separate kernels for the different channels of input they receive? Do the subsequent convolution layers not have separate kernels for separate channels?
@hemasowjanyamamidi61233 жыл бұрын
Thank you so much for the detailed explanation Sir. I look forward to more such videos in future.
@DigitalSreeni3 жыл бұрын
Keep watching
@hemasowjanyamamidi61233 жыл бұрын
@@DigitalSreeni Sure..! Suppose I am using mnist dataset whose image size is 28x28 then the updated vgg16 model for 1 channel is giving error # Negative dimension size caused by subtracting 2 from 1 for '{{node block5_pool/MaxPool}} = MaxPool[T=DT_FLOAT, data_format="NHWC", explicit_paddings=[], ksize=[1, 2, 2, 1], padding="VALID", strides=[1, 2, 2, 1]](Placeholder)' with input shapes: [?,1,1,512]. # Is there any way to resolve this without changing the congiguration of layers in the model?
@jacobusstrydom70173 жыл бұрын
Great explanation. Thanks for the hard work you put in to the videos.
@DigitalSreeni3 жыл бұрын
My pleasure!
@feeham2 жыл бұрын
Really appreciate your effort to explain this all. Thanks a lot.
@DigitalSreeni2 жыл бұрын
You are welcome.
@somalifairytales93658 ай бұрын
well explained sir, thanks for your time
@nelbn2 жыл бұрын
Great video! Very useful!
@DigitalSreeni2 жыл бұрын
Glad it was helpful!
@Mohomedbarakat3 жыл бұрын
A wonderful video as usual!. Thanks a lot
@DigitalSreeni3 жыл бұрын
Thanks again!
@sophiez7952 Жыл бұрын
thanks! if I have a css file and I have 15 rows by 24 columns, which means 15*24*1, one channel, can I still apply vgg16 model without making width and height equal ? thanks!
@mwurzer123 Жыл бұрын
great work, thank you for taking the time to make a 47 mins video instead of 15, while keeping up the quality! did you publish any papers concerning satellite imagery? greetings from hamburg
@azamatjonmalikov95532 жыл бұрын
Amazing content as usual, well done :)
@plyap38723 жыл бұрын
Thanks Sreeni for a very timely tutorial. I was figuring out how to use VGGNet to train my audio melspectrograms which has only a single layer.
@DigitalSreeni3 жыл бұрын
Great to hear!
@idrisseahamadiabdallah76692 жыл бұрын
did it work for you ?
@plyap38722 жыл бұрын
@@idrisseahamadiabdallah7669 The features extracted from VGGNet not very good for audio spectrograms. Not good results.
@jamescallanan63702 жыл бұрын
Thank you. Unreal tutorial :)
@MuhammadKhan-zu6fx Жыл бұрын
I like your great explanation. One request, can you please give number to all your videos. it will help to watch all videos in a sequence. Thanks
@Kpop111447 ай бұрын
sir i'm using densenet201 for training my model . my input images of size 224x224x1 but the input layer accept only of size 224x224x3 . how to solve this issue and suggest some solution
@minhajulhoque21132 жыл бұрын
Great video!
@LAKXx2 жыл бұрын
Very helpful ! Thank you good sir
@liou8493 Жыл бұрын
Hey Sreeni! Great videos as always! Your video on the VGG+XGBoost was a lifesaver for me! I was wondering how this would work if I had a sequence of say 9 grayscale images as input for the VGG16 model? Thank you so much!
@Travellogy1102 ай бұрын
Also i want to use two image pairs for camera pose estimation so i want to combine both image channels i mean 3 channel from one and 3 channel from other image ..is it will work as you demonstrate for 9 channel
@metaforce9514 Жыл бұрын
Please sir I want your reply it's really important If we change the model architecture just by adding layers which also have learnable weights then how can we use the original model weights in this modified model
@konstantinossardelis6023 Жыл бұрын
to input a 9 channel image, can't you just add a convolutional layer with 3 filters on top of the pretrained model ?
@LAKXx2 жыл бұрын
This is probably a dumb question, but why did you use flatten instead of gavaragepooling before the dense layers ?
@NutSorting Жыл бұрын
very helpful video, sir what if we have train and test data set with different image dimensions?
@idrisseahamadiabdallah76692 жыл бұрын
nice video, thanks for sharing. By using the technique I can implement Resnet, AlexNet, ect... . right ?
@oluwaseyibello56472 жыл бұрын
Thanks for the video. This is great video with simple explanation. In a case you encounter unable to allocate 7.8Gib with shape (224, 224, 3). How do we solve it?
@samiulbasirrajib30382 жыл бұрын
How the output shape changes to 224*224 from 224*224?
@jorgefelipegaviriafierro7053 жыл бұрын
I did this for 4 channels based on CWT (continous wavelet transformed) data obtained of several sensor measurements, but the performance of resnet50 and vgg16 has been quite poor :/ .... any ideas of why? maybe the features that the pretrained model stracted from imagenet are not good for cwt... seems unlikely right? I will keep trying to change the lr and the optimizer. I even removed one channel and leave the resnet as it is, with no great results. Great video btw, thanks.
@aarifansari90972 жыл бұрын
thank u, sir. very helpful video
@giussepi3 жыл бұрын
Amazing content! thanks a lot for sharing :)
@hemanshshridhar Жыл бұрын
Great content Sir but i have a doubt whenever i use the vgg_updated as base_model i get the graph execution error sayingCudnn graph failed to build: UNKNOWN: CUDNN_STATUS_BAD_PARAM in tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc(3760): 'conv_op' CUDNN_BACKEND_OPERATION: cudnnFinalize Failed [[{{node sequential/vgg16/block1_conv1/Relu}}]] [Op:__inference_train_function_2696] .......... how to fix this any ideas ?
@leonatay2482 жыл бұрын
Thank you sir. How do we preprocess it before feeding it to transfer learning models?
@shanthisundar7773 Жыл бұрын
Excellent
@falahfakhri27293 жыл бұрын
Tremendous thanks, My question is, Is it possible to take the average of pretrained model to the UNet model?, Or this works only for the same pretrained model with the updated weights according to our input data, channels in this case?
@DigitalSreeni3 жыл бұрын
You can transfer weights from anywhere as long as the shapes match.
@amritasingh89532 жыл бұрын
Thank you so much Sir...can I add new layer in the middle of network which takes previous layers weight . i am using pytorch
@RanjitKumarMahto-s9f Жыл бұрын
Thanks for such a great video. I tried to achieve the same for ResNet101 by updating the weights of 3rd layer(which is the first convolutional layer). But it doesn't seem to work as the updated model is giving some weird accuracy. Can someone please point out what I am missing here
@zohaibrafique9872 жыл бұрын
Great Video, Can you please add a video for video classification using transfer learning?
@chaitanyasharma62702 жыл бұрын
what changes would i have to make for resnet50?works fine for xception
@mohammadmasum44833 жыл бұрын
amazing tutorial. Just to the point. You use square shape images (i.e. 1024 * 1024), however, can we use the same technique for non-square images, for instance, 3500 * 1500?
@DigitalSreeni3 жыл бұрын
Can be any shape, not just square.
@bijulijin8123 жыл бұрын
Is it possible to add more channels VGG model? If possible what could be the weights of new channel? may be we need to manually add random weights
@DigitalSreeni3 жыл бұрын
This video exactly addresses your question.
@fraoney3 жыл бұрын
great videos. i hope you can make a video on object detection using CNN with HOG and linear SVM classifier
@learnopticalandmicrowavere76472 жыл бұрын
Amazing content
@DigitalSreeni2 жыл бұрын
Thanks
@akashmahale765910 ай бұрын
hello sir, I have a numeric dataset of a crop and i want to perform transfer learning and do prediction can please guide me through it thank you sir, waiting for your reply
@maanu1094 Жыл бұрын
by what name the file is uploaded in github
@karamabdullah78673 жыл бұрын
Best wishes
@DigitalSreeni3 жыл бұрын
Thanks
@KashifShaheed3 жыл бұрын
Great informative video , Thank You. Sir, I have a question If we only change the input layer shape to a single Channel. Could we used the same weight of pre-trained model for single channel or do we must update the weight for our modified model? Please, Sir clear my doubt.
@DigitalSreeni3 жыл бұрын
If your question is going from 3 channel to single channel image, you can pick a single channel from the original model or average the 3 channels.
@KashifShaheed3 жыл бұрын
@@DigitalSreeni yes. Sir. I mean to take the average of 3 channels and used as a single channel in new modified model. So that we can use for grayscale (single channel images). But, I think going from 3 to 1 channel directly using original model may be we will got error input size not matched.
@DigitalSreeni3 жыл бұрын
Please watch this video, this is exactly what I covered.
@hadjerbch830 Жыл бұрын
most helpful as laways !!
@DigitalSreeni Жыл бұрын
Glad you think so!
@kashifqurashi93843 жыл бұрын
mri image feature extraction..?
@maitrysinha89472 жыл бұрын
nice learning
@tapansharma4603 жыл бұрын
Sir it’s a request that if you can elaborate 3D images like brats
@martingosnell29372 жыл бұрын
brilliant
@OpeLeke2 жыл бұрын
this videos attempted to communicate an idea but you were all over the place, this video could be so much better with some structure
@jacobusstrydom70173 жыл бұрын
Thanks!
@DigitalSreeni3 жыл бұрын
Thank you Jacobus for your contribution, really appreciate it. Please keep watching.
@tetengious3 жыл бұрын
What a nice video but sir, how can we enhance medical images without losing the properties
@DigitalSreeni3 жыл бұрын
I am not sure what you mean by enhance medical images without losing properties. May be you are looking for super resolution applications?
@tetengious3 жыл бұрын
@@DigitalSreeni I am working on skin lesion disease classification (ISIC 2019 precisely). I am using histogram equalizer to enhance the images, which have to convert to gray, then to color. My question is: won't I loss the image properties doing that?
@rubyli61093 жыл бұрын
really a nice tutorial. Could you help me about how to use it, such as refining the vgg model or use the parameters learned directly? Thanks
@kamaleshkarthi85863 жыл бұрын
Really nice video.....can we do it in yolo v4 model?
@DigitalSreeni3 жыл бұрын
Probably, I haven't done it myself.
@kamaleshkarthi85863 жыл бұрын
@@DigitalSreeni one more question if you're free answer me without fail.... Case 1: I trained a yolo v4 model with two classes. Now i has to train same model with adding another two classes. Train the model without losses of previous two classes weight...is this possible. My answer : reserving extra node in output layer. Can i do this? Your answer for case1 : Case 2 : Dataset description: 4k images with two classes and balanced classes. Using this data set i trained two model using tiny-yolov4. My question is: Model 1 : trained all 4k images. 20k max_batches . getting 84% accuracy avg loss 0.12xxx Model 2: Cycle 1 :i trained 3k images with 20k max_batch getting 94% accuracy. Cycle 2 : i trained 1k images with 20k max batch using last weight of cycle 1. After completion i am getting 94% accuracy. And avg loss 0.0xx. My question is both the model i trained same set of images why result is different. Training small set of image is good? Even though i increased model 20k+20k max batch thare is no improvement. Note: cfg file are same for both model. Thanks and regards, Kamalesh kamaleshkarthi14@gmail.com
@Travellogy1102 ай бұрын
@DigitalSreeni vgg_model = VGG16(include_top=False, weights='imagenet') vgg_config = vgg_model.get_config() # Change the input shape to new desired shape h, w, c = 1024, 1024, 1 vgg_config["layers"][0]["config"]["batch_input_shape"] = (None, h, w, c) #Create new model with the updated configuration vgg_updated = Model.from_config(vgg_config) ---- Error-ValueError: Input 0 of layer "block1_conv1" is incompatible with the layer: expected axis -1 of input shape to have value 3, but received input with shape (None, 1024, 1024, 1) please it sound working for you but i am facing this error...
@Manisha-kp1ln28 күн бұрын
i m also facing same problem
@Travellogy11028 күн бұрын
@@Manisha-kp1ln please use keras 2.2 it worked for me.
@khaikit12322 жыл бұрын
Hi may I ask what is the rationale behind averaging the 3 channels? I can understand that it is definitely better than just taking the weights of a single channel, but how did you determine that averaging was an appropriate method? After much googling on my own, I have heard of others introducing methods such as creating 2 additional channels for the greyscale image before feeding into the VGG16 model. What do you think of this?
@DigitalSreeni2 жыл бұрын
What other options do we have other than averaging the three channels? I do not recommend picking one channel out of three as you will lose information. That leaves averaging the channel as a viable option. VGG16 expects a 3 channel image so the normal way of handling it for grey images is by copying the grey image into additional two channels. This is better than any other alternative.
@yurcchello3 жыл бұрын
don't average conv matrix
@davidsling5 ай бұрын
24:50
@vineetdave7323 Жыл бұрын
This is amazing content. Your concepts are super clear. Great help.
@DigitalSreeni Жыл бұрын
Happy to hear that!
@azamatjonmalikov95532 жыл бұрын
Amazing content as usual, well done :)
@vincente_z61392 жыл бұрын
Thanks!
@DigitalSreeni2 жыл бұрын
Thank you very much for your kind contribution Vincente.