my goodness, that hand trick might help me remember on my IASSC test! thank you!
@instituteofqualityandrelia7902 Жыл бұрын
Thanks! Yes, the hands trick is a very easy way to remember the resolution codes and extent of confounding!🙏
@DavidMonkII Жыл бұрын
Hey I passed my IASSC test. This video surely helped explain confounding and a simple way to remember!! thanks again! @@instituteofqualityandrelia7902
@clipeus874 жыл бұрын
Finally a clear video on fractional factorial design, thanks a lot!
@instituteofqualityandrelia79024 жыл бұрын
Glad it was helpful!
@User123rag Жыл бұрын
Excellent explanation! One gem of a collection!! Thanks a lot for your efforts.:)
@uhemant1 Жыл бұрын
Thank you so much Ragha Laxmi!
@ankitverma88204 жыл бұрын
Wonderful explanation of confounding. Highly recommended for all.
@instituteofqualityandrelia79024 жыл бұрын
Glad it was helpful!
@GioPalencia7 ай бұрын
Very clear and direct to the point. Thank you so much!!!
@instituteofqualityandrelia79026 ай бұрын
Thank you!🙏
@parelectricengineeringllc18169 ай бұрын
Fantastic video. Great insight and excellent presentation
@instituteofqualityandrelia79029 ай бұрын
Glad you enjoyed it!
@philipaston89562 жыл бұрын
Thank you for this clear explanation of confounding and aliasing!
@instituteofqualityandrelia79022 жыл бұрын
Glad it was helpful!
@mdmahmudulhasanmiddya96323 жыл бұрын
Unbelievable explanation.I am enjoying your vedio sir
@instituteofqualityandrelia79023 жыл бұрын
Thank you!
@GyanVisharad4 жыл бұрын
Very information sir..with simple example..Thanks
@instituteofqualityandrelia79023 жыл бұрын
Glad to know!
@calsimeth15883 жыл бұрын
It makes so much more sense to me now! Thank you!
@instituteofqualityandrelia79023 жыл бұрын
I am glad to know! Thanks!
@Yun-Sura2 жыл бұрын
Bless you for this explanation!
@instituteofqualityandrelia79022 жыл бұрын
Thank you! Appreciate your feedback!
@stephenwright72744 жыл бұрын
Thanks for making these videos. Clear and to the point!
@instituteofqualityandrelia79024 жыл бұрын
I am glad you are finding these useful!
@item693110 ай бұрын
This is actually excellent.
@instituteofqualityandrelia790210 ай бұрын
Thank you! I am glad you found it useful!
@rvijayaragunathan3 жыл бұрын
superb.... well explanation sir ...
@instituteofqualityandrelia79023 жыл бұрын
Thanks and welcome
@rohanmore17745 жыл бұрын
Short and succinct !!! Thumbs up !!!
@instituteofqualityandrelia79025 жыл бұрын
Thanks a lot Rohan!
@AhmadAli-rm3pi8 ай бұрын
very nice lecture i solute you thank you sir
@instituteofqualityandrelia79027 ай бұрын
So nice of you
@francoisl7663 Жыл бұрын
Excellent, thank you.
@instituteofqualityandrelia7902 Жыл бұрын
Welcome! Glad to know that you liked it!
@mariaelenacerecedoarroyo58264 жыл бұрын
great video!! Can you recommend some books in order to study the resolution designs?
@instituteofqualityandrelia79024 жыл бұрын
Thanks for your interest! There are many good books. Design of Experiments by Montgomery is excellent reference. George Box's book is very good. My book 'Six Sigma for Business Excellence' is also provides good information on DOE as well as other Six Sigma Tools. If you outside India, you can still buy e-book on Amazon. Good luck!
@mdmahmudulhasanmiddya96323 жыл бұрын
Very good explain sir
@instituteofqualityandrelia79023 жыл бұрын
Thanks and welcome
@ljay32802 жыл бұрын
How about a situation where you have 2 factors ,one with 7 levels and the other with 6 levels. Full factorial gives 42 runs. How do you run these with fractional factorial with less runs?
@instituteofqualityandrelia79022 жыл бұрын
Standard fractional factorial designs are available for two-level designs. In ur case, A has 7 and B has 6 levels. Fractional factorial design is not possible in this case as there are only two factors. If you have more factors with >2 levels, you need computer generated designs. For this you will need clear understanding of the degrees of freedom and your requirements.
@andresalbertocorimayhuasil1423 жыл бұрын
Excellent video, it was really helpful. I got a question, what does a 3*2*2 factorial design means? I understood it refers to three factors and each of them with a specific level, i. e., the first factor has three levels, the second one has two levels, and the last one two factors as well. I thought it was a fractional factorial design. However, I tried to do this on STATISTICA and I could not find a design with 12 runs (according to 3*2*2). You would be so kind to help me to understand this. Thank you.
@instituteofqualityandrelia79023 жыл бұрын
This is not a usual convention. Experiments with different factor levels are called General Full Factorial Designs. You need to create a General Full Factorial Design in software as this is not a standard design.
@vedantigandhi82093 жыл бұрын
You have explained the concept of confounding very well. Thank you for the nice explanation. I just have 1 doubt regarding fractional factorial design. Why did we choose ABC=+1 and not ABC=-1? Thanks a lot! :)
@instituteofqualityandrelia79023 жыл бұрын
Thank you Vedanti. ABC=+1 is the principal fraction. In this principal fraction confounding becomes additive, in the sense, effect of A is actually A+BC, for example. ABC=-1 can also be used if desired. In this fraction effect of A is A-BC, for example. One should be aware of this while selecting the fraction.
@marcouscangaolea12643 жыл бұрын
thanks a lot. Pretty useful this video is
@instituteofqualityandrelia79023 жыл бұрын
I am glad you found it useful! 😊
@TechAger4 жыл бұрын
Very nicely explained Sir... Thanks
@instituteofqualityandrelia79024 жыл бұрын
I am glad you found it useful! Appreciate your feedback!
@mdmahmudulhasanmiddya96323 жыл бұрын
Sir what is run?
@instituteofqualityandrelia79023 жыл бұрын
Run is a trial in an experiment
@mdmahmudulhasanmiddya96323 жыл бұрын
@@instituteofqualityandrelia7902 thank you sir
@KNR853 жыл бұрын
"Experimenters have found that higher order interactions tend to be small and can be ignored often" Is there any reference book or something that we can use to support this statement for the research projects.
@instituteofqualityandrelia79023 жыл бұрын
Hello Nirushan kathiresu, I am repeating the same answer that I mentioned in your other similar question. Basically, the fractional factorisl designs are based on one of the principles known as Sparsity of Effects. According to the sparsity-of-effects principle, it is unlikely that complex, higher-order effects exist, and that the most important effects are the lower-order effects. Thus, assign the experimental units so that main (1st-order) effects and the 2nd-order interaction effects can be investigated. You can get many references for this.
@beshr19933 жыл бұрын
that actually helped, thank u :)
@instituteofqualityandrelia79023 жыл бұрын
Thanks! Good to know!
@asfarnasir4 жыл бұрын
What is the resolutuon of the discussed example?
@MrJewZie4 жыл бұрын
3 or III
@instituteofqualityandrelia79024 жыл бұрын
@@MrJewZie Thanks for directly answering! Yes, the resolution of the design discussed in the vide is 3 or III as main effects are alliased with two-factor interactions!
@instituteofqualityandrelia79024 жыл бұрын
The resolution of the design discussed in the vide is 3 or III as main effects are alliased with two-factor interactions!
@paolo72064 жыл бұрын
Good video
@instituteofqualityandrelia79024 жыл бұрын
Thank you!😊
@mdmahmudulhasanmiddya96323 жыл бұрын
Thank you
@instituteofqualityandrelia79023 жыл бұрын
You're welcome
@dr.akankshasom23094 жыл бұрын
"Experimenters have found that higher order interactions of three and more factor tend to be small and can be ignored often"How did we reach this conclusion.
@instituteofqualityandrelia79024 жыл бұрын
Thanks for your question! Actually this statement is more of assumption based on 'The sparsity of effects principle'. This is more of an assumption that should be based on technical knowledge and judhement and needs to be validated based on analysis of experimental results. If the assumption is not valid, we should find low R-sq values, R-sq-pred values. The experimener is also taking some risk to save time and resources while reducing number of runs in fractional factorials. With best wishes..Hemant