What is Limsup ?

  Рет қаралды 49,152

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 144
@HarpreetSingh-ke2zk
@HarpreetSingh-ke2zk 2 жыл бұрын
I like how Dr Peyam "ignored" the past. Seriously, with Dr Peyam on math is like watching a movie.
@KhanhNguyen-jq1ni
@KhanhNguyen-jq1ni 3 жыл бұрын
I'm learning real analysis for a short course in optimization, and this is the clearest explanation of lim sup that I've ever witnessed. You rock Dr Peyam!
@drpeyam
@drpeyam 3 жыл бұрын
Thank you!!!
@bertrandspuzzle
@bertrandspuzzle 4 жыл бұрын
Blessed with a Dr. Peyam video beyond where I got in analysis. Gonna be a good day!
@iabervon
@iabervon 4 жыл бұрын
I think the interesting sequences are ones like s_n = (1+1/n)cos n, where for all N, there's an n > N such that s_n > limsup s_n and s_n also doesn't converge. And limsup s_n isn't a term of the sequence, either.
@FT029
@FT029 4 жыл бұрын
My analysis prof constantly told us to "play with the soup" to prove things, etc. I can only ever think of lime soup. Also, we defined it as the inf of all the sups, rather than a limit of the sups. Seems to be the same thing. Do you have to mention the case where the sequence isn't bounded from below? Then the limsup would be -infinity.
@Mr_mechEngineer
@Mr_mechEngineer 4 жыл бұрын
Hahahaha interesting
@mtaur4113
@mtaur4113 3 жыл бұрын
To fully grasp the concept, realize that the sequence may exceed its limsup infinitely often, but only by amounts that approach zero. Such as s_n=(1+1/n)(-1)^n
@mtaur4113
@mtaur4113 3 жыл бұрын
Also of interest is that the limsup and liminf are the largest and smallest values that are limits of some subsequence. (Such limits can be proved to exist)
@uniedits5459
@uniedits5459 6 ай бұрын
thank your, professor, really simple explanation in such few words and drawings, i finnaly understand the definition now =D
@drpeyam
@drpeyam 6 ай бұрын
Yay!!!
@lmbcompany1576
@lmbcompany1576 4 жыл бұрын
You helped me think a little wiser about the limits and more... I don't subscribe to people easily but I did it in you just because of your love about maths(simple or more complicated,doesn't matter). Keep going. Hard work beats tallent!
@drpeyam
@drpeyam 4 жыл бұрын
Thank you!
@Mr_mechEngineer
@Mr_mechEngineer 4 жыл бұрын
Dr Peyam, I love how you teach mathematics. Thats exactly how i tutor or at least hope to tutor my students.
@IamRigour
@IamRigour 10 ай бұрын
I haven't even gone far into the video and I can say this is amazing. Thank you sir.
@takoeatsall
@takoeatsall 2 жыл бұрын
My god you are a lifesaver. I came to grads school of statistics without proper math skills, and couldnt understand my professor going over limsup and liminf on day 1. You are perfect teacher
@drpeyam
@drpeyam 2 жыл бұрын
Thanks so much!!!
@josephhajj1570
@josephhajj1570 4 жыл бұрын
We want the Bolzano weistrass theorem proof dr peyam
@drpeyam
@drpeyam 4 жыл бұрын
It’s in the playlist
@josephhajj1570
@josephhajj1570 4 жыл бұрын
@@drpeyam no dr peyam I mean the Bolzano weistrass theorem in R^n that says that an infinite points on a compact set has at least one limit point
@alejandrogomez1176
@alejandrogomez1176 3 жыл бұрын
@@josephhajj1570 I think the theorem demonstrates the existence of limit points in infinite bounded sets, not necessarily compact. In that case, I don’t know the proof either, but observe that infinity is not a sufficient condition: Z is infinite, although it doesn’t have any limit points. Hence, it seems that being bounded is another necessary condition.
@snmgdajl
@snmgdajl 3 жыл бұрын
@@josephhajj1570 you can lead that one back to the one dimentional. Just apply it to every part of the sequence vector :) there u go :)
@davidkwon1872
@davidkwon1872 4 жыл бұрын
Oh my, this is so easy that the question I don’t know is why I could not understand it so far???
@drpeyam
@drpeyam 4 жыл бұрын
It’s actually a pretty hard topic, I just explained it well 😊
@laralahey3456
@laralahey3456 4 жыл бұрын
An excellent video, I have been struggling with understanding the intuition behind this concept; but you have answered all of my questions. I can't thank you enough!
@amberheard2869
@amberheard2869 4 жыл бұрын
limsup notation cause lots of confusion when I was learning Rudin. Thank you. This one is very intuitive.
@littleKingSolomon
@littleKingSolomon 2 жыл бұрын
Dear Dr. Peyam, you're amazing.
@drpeyam
@drpeyam 2 жыл бұрын
Thank you!!
@rupeshmishra-vnc
@rupeshmishra-vnc 4 жыл бұрын
Most handsome and talented mathematician
@Kdd160
@Kdd160 4 жыл бұрын
*Cutest also 😍😍
@CatchyCauchy
@CatchyCauchy 4 жыл бұрын
By far the happiest
@Songvbm
@Songvbm 4 жыл бұрын
I was waiting for a better explanation on liminf and limsup. I got it here. Thanks Dr. Peyam..
@frozenmoon998
@frozenmoon998 4 жыл бұрын
All I was able to hear after approximately 9:30 is lime soup :).
@felipegomabrockmann2740
@felipegomabrockmann2740 4 жыл бұрын
for the very first time I do understand this thing. Thank you very much!!!!!!!
@amberagyemang9285
@amberagyemang9285 4 жыл бұрын
You are a hero Dr Peyam
@aidancheung7264
@aidancheung7264 Жыл бұрын
Well after watching the video, I reckon that limsup should be some delicious soup.
@kashish629
@kashish629 Жыл бұрын
Thankyou sir. I was really scared of this topic. Thanks for erasing my fear :)
@harrisonbennett7122
@harrisonbennett7122 10 ай бұрын
Great video, very clear! Great prep for my PhD in maths
@drpeyam
@drpeyam 10 ай бұрын
Thank you!!
@awu878
@awu878 2 жыл бұрын
thank you so much, i don;t understand lim sup and inf until now.
@erictao8396
@erictao8396 2 жыл бұрын
Great video! There seems to be one more option though besides the limit superior going to infinity or converging to a finite number: It could be negative infinity also.
@maxpercer7119
@maxpercer7119 2 жыл бұрын
The lim in the limsup scared me (also the sup scared me), but the idea is straightforward. We define the limsup of a sequence s_1, s_2, ... , s_n, ... , as the limit of a sequence of sups, specifically, sup {s_1, s_2, ... }, sup {s_2, s_3, ...} , ..., sup { s_3, s_4, ... } , .. (this is made rigorous in the youtube video). The threshold-wall analogy is great. We can visualize the limsup as the sup of the graph of (n, s(n)) as you keep moving the wall to the right (so you cannot see initial terms to the left). Alternatively, fix the screen and move the points (n, s(n)) to the left, and take the sup of the terms remaining to the right (like a mario brothers game ). Moreover, at the risk of being handwavy, limsup n→∞ s_n = sup { s _∞ , s_∞ + 1, ... } . Note that the latter is only meant to be a heuristic, not a rigorous statement. Also note for the ultrafinitists, the symbol ∞ is intended to be merely suggestive of a very large number (in this context a very large integer) . This permits us to avoid the whole 'potential infinity' versus 'completed infinity' debate.
@f3ynman44
@f3ynman44 4 жыл бұрын
10:16 You say supremum always exists. So, even for the sequence = N (natural numbers), would sup be infinity? Is it ok to say sup = infinity?
@drpeyam
@drpeyam 4 жыл бұрын
Yep! There’s actually a video on that in the playlist
@jabranehcini1674
@jabranehcini1674 3 жыл бұрын
Like R barre
@simengsun616
@simengsun616 Жыл бұрын
can you explain why the limsup is still decreasing when the sequence (for example, at 2:30) is monotonically increasing and is bounded above? I don't quite get that part when reading the textbook. I get the idea of the proof of why {a_n} (defined as sup{x_k : k greater equal to n}) is decreasing and {b_n} is increasing, but visually, what if the sequence is monotonically increasing and bounded above? Isn't the sup also increasing in that case? What is the inf? Thank you so much!
@drpeyam
@drpeyam Жыл бұрын
In the case of an increasing sequence the Sup would just be constant every time so it’s increasing in a degenerate case. The inf would be the value at N
@simengsun616
@simengsun616 Жыл бұрын
@@drpeyam Thank you so much for the reply!
@bhupeshyadav1340
@bhupeshyadav1340 3 жыл бұрын
Greatest explainer, I subscribe people rarely, here have a subscriber
@drpeyam
@drpeyam 3 жыл бұрын
Thanks so much!!
@wtt274
@wtt274 Жыл бұрын
Thank you sir for this super video so clearly explaining the concepts 9f limsup and living !
@ashishranjan276
@ashishranjan276 Жыл бұрын
Very helpful video,concept cleared 😇,
@karamkassem9821
@karamkassem9821 3 жыл бұрын
Man you are a life saver Thanks so much Dr
@prashantsharma-mc6hh
@prashantsharma-mc6hh 2 жыл бұрын
There is an alternate definition of lim sup: lim sup is defined is as the largest limit point (or accumulation point) of the sequence. Let's call this def 2 and yours def 1. I can prove def 1 implies def 2. But I am unable to prove def 2 implies def 1. Please help. Any relevant link is suffice. Thank you!
@richardfredlund3802
@richardfredlund3802 4 жыл бұрын
what if the you have something like 1/x which has a pole at zero. if you define Sn=1/(n-10) for example at 10 it diverges but after that it goes down, so it's not bounded, but when n is large it's going to tend to 0. ?
@drpeyam
@drpeyam 4 жыл бұрын
That’s why we write n goes to infinity
@Absilicon
@Absilicon 4 жыл бұрын
S_10 isn't defined here? Do you really have a sequence then?
@farhanhyder7304
@farhanhyder7304 2 жыл бұрын
Thank you. Simple and clear
@kkcubes4454
@kkcubes4454 4 жыл бұрын
This is the best explanation ever!!!!!!!
@asparagii
@asparagii 3 жыл бұрын
thanks for explaining this so clearly - it helped me.
@xavierwatson9906
@xavierwatson9906 3 жыл бұрын
excellent explanation, thank you
@noahtaul
@noahtaul 4 жыл бұрын
Will you make this video public soon?
@drpeyam
@drpeyam 4 жыл бұрын
Yeah
@michalbotor
@michalbotor 4 жыл бұрын
dr peyam, essential supremum next?
@mansikumari4954
@mansikumari4954 3 жыл бұрын
best explanation possible
@S24W2
@S24W2 3 жыл бұрын
Thank you so much , great explanation
@nikhdzia
@nikhdzia 3 жыл бұрын
after 2 year of my college now I come to know that ooh limsup was this......
@edivardeshenrique7196
@edivardeshenrique7196 4 жыл бұрын
Bolzano-Weierstrass is the next step?
@drpeyam
@drpeyam 4 жыл бұрын
It’s in the playlist
@S24W2
@S24W2 3 жыл бұрын
Dr peyam, if a sequence is bounded, will it always be that the sup is larger before the lim sup before N? Is this why V is a decreasing sequence? What if it started off small before it started oscillating? The analogy if the class grades wouldn't apply then?
@S24W2
@S24W2 3 жыл бұрын
I get it now actually, even if the sequence starts off small, its the supremum of all the terms from x n onwards, I get it
@dgrandlapinblanc
@dgrandlapinblanc 2 жыл бұрын
Clear. Thank you very much.
@madhavpr
@madhavpr 4 жыл бұрын
Hey Dr Peyam.. Could you please do a video which talks about lim sups and lim infs as the greatest and the least subsequential limits of a sequence? I understand both the definitions of lim sup separately (i.e 1) as the greatest subsequential limit and 2) in terms of helper sequences) but can't quite understand why these two characterizations are equal. :-/
@drpeyam
@drpeyam 4 жыл бұрын
I’ve already done that, check out the playlist. Something like subsequence converging to Limsup
@madhavpr
@madhavpr 4 жыл бұрын
@@drpeyam Yayy!! Awesome
@vaibhavmohata8708
@vaibhavmohata8708 3 жыл бұрын
That was really really helpful thank you!
@honghong324nt5
@honghong324nt5 4 жыл бұрын
What if a sequence was to increase and then oscillate, and the limsup is larger than any other element before N, does that mean that V(N) is still decreasing?
@drpeyam
@drpeyam 4 жыл бұрын
It’s still decreasing, since the larger N is, there are fewer values to compare to. The sup of 20 elements is always bigger than the sup of a subset with 10 elements
@honghong324nt5
@honghong324nt5 4 жыл бұрын
Dr Peyam Oh I see, thank you!
@alexandrasnobl8545
@alexandrasnobl8545 4 жыл бұрын
This is amazing, thank you!!!
@jacoboribilik3253
@jacoboribilik3253 2 жыл бұрын
Mathematicians are always coming up with new definitions to sort out the singularities that former definitions cannot fix. Like cesaro sums, analytic continuity, lim sup and so on.
@prashantsharma-mc6hh
@prashantsharma-mc6hh 2 жыл бұрын
Thanks, great explanation! Btw, Why is V_n bounded below? You assumed it, right?
@drpeyam
@drpeyam 2 жыл бұрын
I believe the sequence is bounded
@prashantsharma-mc6hh
@prashantsharma-mc6hh 2 жыл бұрын
@@drpeyam Got it. Thanks.
@DP-sq7lw
@DP-sq7lw 2 жыл бұрын
What happens to liminf{x_n} if {x_n} is only bounded above? Does liminf{x_n} differ depending on how the sequence {x_n} looks like?
@drpeyam
@drpeyam 2 жыл бұрын
It could be -oo as the example xn = -n shows
@johnhare8208
@johnhare8208 4 жыл бұрын
What if you had a limsup such that it fit a function rather than a constant. Perhaps you could expand models of limsup with lim arbitrary function f(x)
@drpeyam
@drpeyam 4 жыл бұрын
Just take limsup at every point. It’s called the upper semicontinuous envelope I believe
@IamRigour
@IamRigour 10 ай бұрын
You've gained a subscriber
@drpeyam
@drpeyam 10 ай бұрын
Awwwww thank you!!!
@Magistrixification
@Magistrixification 4 жыл бұрын
So if limsup = liminf, does that imply lim converges?
@drpeyam
@drpeyam 3 жыл бұрын
Exactly, there’s a video on that
@MushookieMan
@MushookieMan Жыл бұрын
If you have a decreasing unbounded sequence, would limsup be -inf?
@drpeyam
@drpeyam Жыл бұрын
Yes since the limit is -inf
@fadiadaghestani3158
@fadiadaghestani3158 2 жыл бұрын
One question Professor: Is limsup at infinity is the same as 'sup infinity'?
@drpeyam
@drpeyam 2 жыл бұрын
I never heard of the latter
@vedantshah4230
@vedantshah4230 4 жыл бұрын
Sir, where are u from? I wish I could give multiple likes to this video!!!♥️♥️😘😘
@jncheah2879
@jncheah2879 3 жыл бұрын
What is MCT? Is it Monotonic Convergence theorem?
@drpeyam
@drpeyam 3 жыл бұрын
Yeah
@jncheah2879
@jncheah2879 3 жыл бұрын
@@drpeyam thank you Dr! Can you explain about how to use completeness axiom in finding the sup and inf of an interval? This analysis course is really struggling for me 😢
@drpeyam
@drpeyam 3 жыл бұрын
Check out the playlist on Real Numbers
@jncheah2879
@jncheah2879 3 жыл бұрын
@@drpeyam noted with thanks Dr!
@s.alizapiotrowski1474
@s.alizapiotrowski1474 3 жыл бұрын
Wow! Thank you!
@johnhippisley9106
@johnhippisley9106 3 жыл бұрын
Makes perfect sense now
@jabranehcini1674
@jabranehcini1674 3 жыл бұрын
Thaks bro thats realy help
@invisiblex90
@invisiblex90 3 жыл бұрын
Thanks
@RayOne8
@RayOne8 3 жыл бұрын
Lin-soup is the soup that in the long run !!! That is the whole point.
@tgx3529
@tgx3529 4 жыл бұрын
"Sequence Vn is not always decreasing, but not increasing". But what about arctg(n)?
@drpeyam
@drpeyam 4 жыл бұрын
vn is non-increasing, but it could be constant
@tgx3529
@tgx3529 4 жыл бұрын
@@drpeyam But the function arctan (x) is increasing
@drpeyam
@drpeyam 4 жыл бұрын
No but look at the definition of vn
@tgx3529
@tgx3529 4 жыл бұрын
@@drpeyam Thank you, I understand, I saw the picture comparison values ​​and the definition I overlooked.There are Suprems , not values.
@drpeyam
@drpeyam 4 жыл бұрын
Yes
@dongookson3755
@dongookson3755 4 жыл бұрын
This is god’s work 👏🏼
@xpsprogamer3691
@xpsprogamer3691 3 жыл бұрын
Awesome kept it up!
@hayallerimverenklerim9733
@hayallerimverenklerim9733 3 жыл бұрын
Is similar things valid for liminf or not?
@drpeyam
@drpeyam 3 жыл бұрын
Of course
@butjok
@butjok 3 жыл бұрын
I enjoyed the amount of soup in this one =)
@drpeyam
@drpeyam 3 жыл бұрын
Good soup 🍜
@kartikkamboj295
@kartikkamboj295 4 жыл бұрын
Wow! Thanks.
@thomasborgsmidt9801
@thomasborgsmidt9801 4 жыл бұрын
Now, I'm no mathmatical wizard and my formal education in math is limited to the "need to know"-level of economists. Now my math professor in university was one of the few I bothered to listen to. But I do find the level of ignorance and interest disconcerting. I know the abysmal lack of comprehension for a fact. My farther did a course in pharmaco-kinetics shortly before retiring and I as a student was able to derive the fairly simple first order differential equations. The elimination of a drug is a straight line on single logarithmic paper. The problem were that neither his collegues nor the medical professor GOT IT! It simply flew into interstellar space over their pin-heads. There was a nobel laureate in economic that had a model of the price of shares based on the assumption that stock market quotes were normal distributed - probably because it was the only statistical distribution he knew. The result was as devastating as it was predictable: He ruined his business because in so far as the stock market quotes are statistically distributed they are NOT following a normal distribution. The Normal Distribution is an extreemly "slimtailed" distribution which does not take rare but very extreme occurences into consideration. Personally I have given up - I do not want to waste my life telling people that they are ignorant idiots, as they will never believe it - no matter what. So I have resigned myself to be the nasty disrespectfull person. There are no perks in being right.
@aviralsood8141
@aviralsood8141 4 жыл бұрын
It's a simple fix really. Just get your own Nobel prize because you can easily beat the chump who doesn't understand normal distributions and with the money open a more successful business which will never collapse in your lifetime. Only perks in being right are when you apply it to your own decisions.
@cpgrace1902
@cpgrace1902 4 жыл бұрын
Very cool!
@fadiadaghestani3158
@fadiadaghestani3158 2 жыл бұрын
If S n is bounded Sup{S n | n> N} = 1 For all N Sup biggest value in sequence Lim sup Sn lim [Inf]= 1 Limsup[Inf] = sup (biggest value) converging in the long run Has to do with the helpers sequence Sequence decrease & non increasing Sometimes limit But the bright side Limsup[inf] always exists Lim Sup doesnt exist Infimum the smallest value Lim inf [Inf] {SN | n >N} Fact lim inf sequence fn Is Lim inf [Inf]=-lim sup [Inf] -Sn Recall inf S = - sup -S Long run Inf {Sn | n > N }= - sup{ - Sn | n >N } Taking lim of both sides Lim inf Sn[Inf] = - lim sup Sn[Inf]
@titobruni987
@titobruni987 2 жыл бұрын
Bro I love u hahahah best explanation ever
@drpeyam
@drpeyam 2 жыл бұрын
Thank you ❤️
@uanm_2504
@uanm_2504 Жыл бұрын
Love you
@victorserras
@victorserras 4 жыл бұрын
These ideas aren’t so difficult, it’s just that the most textbooks make a poor job at explaining them
@mayureshjoshi4616
@mayureshjoshi4616 3 жыл бұрын
why did you start at Vsubscriprit("0") , 0 is not a natural number
@drpeyam
@drpeyam 3 жыл бұрын
It is
@Deksudo
@Deksudo Жыл бұрын
Was it this simple...
@adityaujjwalmain5943
@adityaujjwalmain5943 4 жыл бұрын
Sup?
@bj8252
@bj8252 Жыл бұрын
limsoup
@chimetimepaprika
@chimetimepaprika 3 ай бұрын
A soup made from human limbs. Scary
@eris4734
@eris4734 3 жыл бұрын
not much, what's limsup with you
@Hello_am_Mr_Jello
@Hello_am_Mr_Jello Жыл бұрын
Wa lmo3a9
@ashishranjan276
@ashishranjan276 Жыл бұрын
Most other videos and time wasting on other channels
@ashtocarbon
@ashtocarbon 3 жыл бұрын
is he high on math?
@jkid1134
@jkid1134 4 жыл бұрын
limsup balls lmao gottem
@navier668
@navier668 4 жыл бұрын
Not much what about you
@郭奕宏-o8d
@郭奕宏-o8d Жыл бұрын
thanks
Limsup vs Limits
10:43
Dr Peyam
Рет қаралды 14 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Cauchy Sequences
16:32
Dr Peyam
Рет қаралды 22 М.
Limit Supremum and Limit Infimum of Sets (part 1 of 2)
13:58
statisticsmatt
Рет қаралды 24 М.
Supremum of a set
13:02
Dr Peyam
Рет қаралды 11 М.
Real Analysis 11 | Limit Superior and Limit Inferior
8:54
The Bright Side of Mathematics
Рет қаралды 72 М.
Real Analysis | Cauchy Sequences
19:15
Michael Penn
Рет қаралды 98 М.
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 161 М.
Limsup Squeeze Theorem
9:55
Dr Peyam
Рет қаралды 7 М.
This Is the Calculus They Won't Teach You
30:17
A Well-Rested Dog
Рет қаралды 3,5 МЛН
How to Remember Everything You Read
26:12
Justin Sung
Рет қаралды 2,6 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН