I take notes, pause, rewind, pause, rewind ... Spending a couple of hours on this vid to get every step of it! Thank you! Im a fresh grad student i math, and I really appriciate this. Best regards from Norway
@JackSPk4 жыл бұрын
Thank you very much! the context you add while advancing into the proof make it much easier to follow and understand whats happening. Also your jokes are great! :)
@Rundas694206 жыл бұрын
Integral Equations look very interesting. It would be nice to see something about them from you since I haven't seen anything from the topic of I.E yet and you make everything understandable. So maybe this type of equation would be something for next year :D
@sedeanimugamez54186 жыл бұрын
You are the most epic gamer I love your videos thank you
@OtherTheDave6 жыл бұрын
It always makes my chuckle when I hear “x not ” instead of “x naught ” .
@willnewman97836 жыл бұрын
Good video. Does this proof also work for complex differential equations?
@MichaelRothwell14 жыл бұрын
Lovely proof. I haven't looked up the Banach fixed point theorem, but it seems intuitively obvious. Just define xn=T^n(x) and you have a Cauchy sequence (due to the contraction property) and so converges (by completeness) and by a simple limit argument Tx=x (just like for recursively defined sequences of real numbers). From the contraction property we easily show uniqueness. Done!
@MichaelRothwell14 жыл бұрын
P. S. I came here after watching your great recent video illustrating an ODE with a non-unique solution "because it's not Lipschitz", taken straight from here. BTW, the Lipschitz condition would be equivalent to a bounded derivative for a differentiable function, so it's clear that √x is not Lipschitz for x>0 and so also not Lipschitz for x≥0.
@ninck89926 жыл бұрын
Great video! Can you show us why there isn't a similar theorem for PDE? I've seen an example of an first order linear PDE without any solution and it blew my mind.
@StreuB16 жыл бұрын
I have absolutely no idea what is going on here.......but its still badass!!!
@howmathematicianscreatemat92265 жыл бұрын
thank you for applying this term to our science! It felt like coolness wouldn't want to go that far! It made our subject seem boring and dead.
@rolfschramek70607 ай бұрын
Great Video as always. Isn't there a problem defining the metric on X like this, because X is not a vector space, hence not a Banach space. Or maybe I'am misunderstanding something.
@danielescotece71446 жыл бұрын
Your videos are helping me a lot with my analysis 2 exam! Thank you!
@bebarshossny51484 жыл бұрын
i wish you were my professor :,( i'm so glad we have your videos man
@SamSarwat905 жыл бұрын
How can somebody dislike this....
@salvatoregiordano90504 жыл бұрын
Beautiful explanation! You are amazing. Thank you so much!
@parthasarker61216 жыл бұрын
Is Lipschitz condition somehow related to the uniform dependence on initial conditions?
@drpeyam6 жыл бұрын
I don’t think so because the Lip condition depends on f, whereas the other one depends more on y0
@parthasarker61216 жыл бұрын
@@drpeyam hey can you give me some resource to study about Lip condition?
@j.v63343 жыл бұрын
Is there a theorem like this for higher order ODE?
@shumailaazam64 жыл бұрын
can we use odes theories in nonlinear pdes? too?
@ey37963 жыл бұрын
For x,y belonging to U, mod(x-y) is euclidean distance between them? Since U itself belongs to R^m.Thanks 🙂.
@SylComplexDimensional6 жыл бұрын
CoolFIRE ODE Analysis!!
@Anders30006 жыл бұрын
Great proof, thank you!!
@phuocbui33475 жыл бұрын
The final example , i think F need to lipchitz around x0 =1 , because F(y(t)) with t around 0 is around y(0)=1,(F(y(0))= F(1)),but you say it lipchitz around 0 ,can you explain, thank you very much
@fonzi1023 жыл бұрын
very well explained, gj
@gregorymacchio40774 жыл бұрын
Thank you!!!
@shiina_mahiru_90676 жыл бұрын
You said we turn it into an integral equation because limit is easier to pass in . . . but . . . did we use any limit in the proof? 😂
@drpeyam6 жыл бұрын
Yeah, because the Banach Fixed Point Theorem involves limits 🙂
@danielescotece71446 жыл бұрын
Peano and Cauchy, im studying them right now ahahhaha so cool, exactly like a minute ago
@Jaylooker4 жыл бұрын
Nice
@AndDiracisHisProphet6 жыл бұрын
make it so!
@dgrandlapinblanc6 жыл бұрын
Never in hollidays ? What's a crime ! Thank you very much...
@Debg916 жыл бұрын
Aahh that's hot!
@AxiomaticUncertainty6 жыл бұрын
First
@deeptochatterjee5326 жыл бұрын
Good for you buddy
@floribus55227 ай бұрын
Great Video as always. Isn't there a problem defining the metric on X like this, because X is not a vector space, hence not a Banach space. Or maybe I'am misunderstanding something.