Cantor Intersection Theorem

  Рет қаралды 8,136

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 26
@ariel_haymarket
@ariel_haymarket 4 жыл бұрын
"Press F to pay respects" good night everyone.
@rohitkandimalla9259
@rohitkandimalla9259 4 жыл бұрын
After watching one by one I addicted to your vedioes
@vibhupandya6103
@vibhupandya6103 4 жыл бұрын
Ingliszh
@umerfarooq4831
@umerfarooq4831 4 жыл бұрын
You have really helped me in every aspect of math
@FT029
@FT029 4 жыл бұрын
calling the subsequence the "express train" was pretty fun!
@lexyeevee
@lexyeevee 4 жыл бұрын
you don't actually need the axiom of choice, do you? if the Fs are closed and bounded, then you can define a choice function, e.g. pick the minimum. in fact i'd think that makes the proof easier to grasp since then the sequence is nondecreasing
@drpeyam
@drpeyam 4 жыл бұрын
That’s true, good point
@thedoublehelix5661
@thedoublehelix5661 4 жыл бұрын
This is sorta like the generalization to the nested interval property. Also, why do you use closed and bounded instead of compact ? Aren't they the same thing
@drpeyam
@drpeyam 4 жыл бұрын
Yeah but let’s keep it simple
@thedoublehelix5661
@thedoublehelix5661 4 жыл бұрын
@@drpeyam oh I guess you didn't prove that yet in the video series lol. I just thought it would be more elegant if you phrased things in terms of compact sets
@drpeyam
@drpeyam 4 жыл бұрын
Elegant yes, but quite traumatizing if you introduce it this way hahaha
@dgrandlapinblanc
@dgrandlapinblanc 2 жыл бұрын
Excellent ! Thank you very much.
@Psjt9230
@Psjt9230 4 жыл бұрын
He is a great Mathematician
@dr.rahulgupta7573
@dr.rahulgupta7573 4 жыл бұрын
Excellent ! Beautiful presentation of the topic . Thanks .DrRahul Rohtak Haryana India
@Akihikoo_
@Akihikoo_ 4 жыл бұрын
Thanks so much Dr
@leprofeet9989
@leprofeet9989 3 жыл бұрын
yea that makes things clear
@DELTASERPENT
@DELTASERPENT 4 жыл бұрын
Great teaching Payamji. Need a bigger whiteboard
@drpeyam
@drpeyam 4 жыл бұрын
Buy me one then, haha
@PositronQ
@PositronQ 4 жыл бұрын
My favorite theorem, in which it has a property of incompleteness with several hypotheses as the proof of this is possible and at the same time not, the indeterminate independence is always there in all the problems defined with simple axioms in which they break and not. I think cantor do a good theorem that people underestimated. Also This theorem can give us a logic definition of the undefined everything is nothing. That is the same that I said in a “simple ways”.
@madhavpr
@madhavpr 4 жыл бұрын
Cool video.. One of my favorite theorems in analysis. Just a quick clarification- In single variable analysis, the point x that's contained in all the closed and bounded intervals F_n is *unique* if the lengths of these intervals goes to 0. I guess the same would be true for R^k { k >= 2} with an appropriate notion of "length". If the area/volume of closed and bounded sets (like generalized rectangles or hyper-spheres) goes to 0, then this point x is unique. Am I right?
@FT029
@FT029 4 жыл бұрын
I don't think this is right in one variable (oops- just realized you noted it was for intervals only, so this counterexample doesn't work). Consider F_n = [0, 1/n] union [1, 1 + 1/n]. The intersection of it all is just the points 0 and 1. I think, if you wanted to prove your claim, a connectedness argument might work. Maybe show that the intersection of all the sets is connected, and that the only connected set of measure 0 is just a singleton. (Although measure, defined in the usual way, wouldn't work because something like a line segment would have measure 0 in R^2)
@honghong324nt5
@honghong324nt5 4 жыл бұрын
For the first non-ex, wouldn't [0,1/n) also work even though it's not closed?
@drpeyam
@drpeyam 4 жыл бұрын
No since 0 is in all of them hence in their intersection
@honghong324nt5
@honghong324nt5 4 жыл бұрын
@@drpeyam Thank you!
@Happy_Abe
@Happy_Abe 4 жыл бұрын
Funky
Cantor set
15:37
Dr Peyam
Рет қаралды 18 М.
Taste of topology: Open Sets
23:48
Dr Peyam
Рет қаралды 28 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
Banach Fixed-Point Theorem
18:04
The Bright Side of Mathematics
Рет қаралды 11 М.
[a,b] is compact
16:55
Dr Peyam
Рет қаралды 9 М.
What happens at infinity? - The Cantor set
16:25
Zach Star
Рет қаралды 269 М.
The Concept So Much of Modern Math is Built On | Compactness
20:47
Morphocular
Рет қаралды 448 М.
Baire Category Theorem
16:01
Dr Peyam
Рет қаралды 14 М.
journey into fractals: the Cantor set and ternary expansion.
20:58
Michael Penn
Рет қаралды 20 М.
What is a closed set ?
32:33
Dr Peyam
Рет қаралды 13 М.
Can you crack this beautiful equation? - University exam question
18:39