Inner Product Spaces

  Рет қаралды 18,232

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 56
@drpeyam
@drpeyam 5 жыл бұрын
Typo: The dot product on polynomials I showed is not a dot product. What I meant to say is this: let your space be Pn (the polynomials of degree n or less) and choose n+1 distinct points xi, and let p . q = sum over i of p(xi) q(xi). That’s a dot product
@amicm4935
@amicm4935 3 жыл бұрын
You know a book that shows the of this one?
@eswyatt
@eswyatt Жыл бұрын
@@amicm4935 David Lay's Linear Algebra book uses this example in the chapter on Inner Product Spaces
@coefficient1359
@coefficient1359 5 жыл бұрын
I really needed this, thanks for uploading
@loganreina2290
@loganreina2290 5 жыл бұрын
Dr. Peyam, shouldn't we have u•v=(v•u)* for full generality? I fully agree with your definition for Real Inner Product Spaces though. Thank you.
@eswyatt
@eswyatt Жыл бұрын
Thank you Dr. Peyam. I thought this multiplying two polynomials evaluated at t1, t2, . . . tn, was just a David Lay fetish. Couldn't understand why we weren't multiplying coefficients of the two polynomials. But seeing it as sampling makes it relatable, somehow.
@eliavrad2845
@eliavrad2845 5 жыл бұрын
And thus did quantum mechanics sprang into existence
@Theraot
@Theraot 5 жыл бұрын
If we define the angle between two functions using this, and use it compute the angle between two functions that correspond to lines, does it gives you the angle between the lines (perhaps with some tweaking that can be generalized)? Because, that would be cool.
@drpeyam
@drpeyam 5 жыл бұрын
Yep
@holyshit922
@holyshit922 11 ай бұрын
Why weight function is missing in 7:11 inner product example?
@drpeyam
@drpeyam 10 ай бұрын
? There is no weight function here in this example
@gamedepths4792
@gamedepths4792 5 жыл бұрын
Can we use these properties on non uniform circular motion ?
@loganreina2290
@loganreina2290 5 жыл бұрын
Also, Peyam, what do you mean by "most general dot product?"
@alinajmaldin
@alinajmaldin 5 жыл бұрын
When taking dot product of functions, what happened to the “dT” when you go to the summation notation? Thanks
@muratdastemir1613
@muratdastemir1613 2 жыл бұрын
Did you find an answer?
@aneeshsrinivas9088
@aneeshsrinivas9088 3 жыл бұрын
Does the inner product for functions have any visual interpretations. Also is there a cross product for functions.
@timka3244
@timka3244 5 жыл бұрын
Why you are not uploaded a video on about 3-4 days, dr Peyam?
@JamalAhmadMalik
@JamalAhmadMalik 5 жыл бұрын
We just started this at university. Please, do more videos on Vector Analysis.
@drpeyam
@drpeyam 5 жыл бұрын
There’s a whole playlist on orthogonality and one on vector calculus
@JamalAhmadMalik
@JamalAhmadMalik 5 жыл бұрын
@@drpeyam Thanks a lot for the reply, Dr. But we are studying God knows what Talking about grads and divergence, etc. And the properties thereof. It is way over our head--at least by the way we are taught! :/
@drpeyam
@drpeyam 5 жыл бұрын
The vector calculus playlist takes care of all that :)
@DargiShameer
@DargiShameer 3 жыл бұрын
@@drpeyam make videos on Hermite and Lauger differential equations
@Anony1176
@Anony1176 4 жыл бұрын
Can you say why summation of a(ti)b(ti) is the integration of ab dx? I couldn't understand the inner product formula at hilbert space. If you kindly tell it will be really helpful for me. Thanks.
@drpeyam
@drpeyam 4 жыл бұрын
It’s not a definition, it’s an intuition.
@Anony1176
@Anony1176 4 жыл бұрын
I think it is because we are assuming that f(x) will remain f(x) on the interval dx.So basically we are adding y's. And as in the interval dx, y will remain y or f(x) so when we are adding f(x) within the interval dx. Total additive values of f(x)'s is f(x)dx. And so whole additive values will be integral f(x)dx. I am a physics research student it is a very important concept in quantum mechanics as bra ket notation. So if you kindly tell me or which theory or book may I read to clear this concept that will be really really helpful for me.
@academicalisthenics
@academicalisthenics 2 жыл бұрын
Does the result of a dot product always have to result in a single number? If so, wouldn't this also count as a kind of property then?
@drpeyam
@drpeyam 2 жыл бұрын
It’s part of the definition, as a function from V x V to R or C
@Tomaplen
@Tomaplen 5 жыл бұрын
when you are not 100% sure about your anser in an exam: Answer "=" 6
@Jnglfvr
@Jnglfvr 3 жыл бұрын
Your formula at 11:21 is not correct. The angle between t and 1 is the ratio of the integral of t*dt divided by the product of (the square root integral t^2*dt times the square root of integral of dt)
@pco246
@pco246 5 жыл бұрын
In the example from the polynomial space you could get a vector which is orthogonal to itself but isn't 0 (for example, x). Doesn't that mean that it's not a true inner product?
@drpeyam
@drpeyam 5 жыл бұрын
See pinned comment
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
How do I find a function, that, when it's integrated, the upper Interval-limit is the root of its own integral? Integral_[0,sqrt(F(x))] f(x) dx = F(x)
@drpeyam
@drpeyam 5 жыл бұрын
Oh, I think when you differentiate that and use the Chen Lu, you get a differential equation, which you can (in theory) solve
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
@@drpeyam Ok, then lets do a functional equation: f(x)^f(x) = sqrt(f(x)) what's f(x) ? Functional equations are more interesting than differential equations
@drpeyam
@drpeyam 5 жыл бұрын
I’d take ln of both sides, cancel out by f, and then solve for f
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
@@drpeyam I know. This was just an example. Solution is f(x) = 1/2 & 1 of course f(x)^f(x) = f(f(x)) is not so easy any more I tried to say, lets discuss "functional equations" Usually, functional equations are more difficult than Differential Equations, in my opinion.
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
f'(f(x)) = f(x)² --> f(x) = x³/3
@Royvan7
@Royvan7 5 жыл бұрын
i am curious if there is a good way to phrase the integral definition of f . g is terms of a matrix. i suppose you could have f and g be infinite dimensional vectors and the matrix be a I*dt but that doesn't seem very useful. i suppose if you constructed a basis of function then you could probably construct a useful matrix to represent the dot product. hmm...
@drpeyam
@drpeyam 5 жыл бұрын
Not really, since functions are infinite dimensional (and in fact uncountable-dimensional)
@xuanchen3434
@xuanchen3434 5 жыл бұрын
I think the analogy of matrix should be a function with 2 variables. Then the generalized inner product can be something like int_x(int_y(f(x)M(x,y)g(y))). However the analogy of "transpose" is still unclear...
@dhunt6618
@dhunt6618 5 жыл бұрын
No pun from me today, since this is really cool!!! As an aside, this would be interesting if it could be added to the C++ boost or STL libraries, if possible (assuming it isn't already there). Thanks!
@dueffff
@dueffff 5 жыл бұрын
Doesn't the dot product for polynomials given here violate the property "U*U=0 => U=O"? since taking a polynomial p without constant term yields p*p = p(0)*p(0) = 0, but p need not be the zero polynomial.
@drpeyam
@drpeyam 5 жыл бұрын
You’re right, should evaluate it at 3 points or more
@dueffff
@dueffff 5 жыл бұрын
@@drpeyam But the argument still holds as long as we use a fixed finite set of sampling points. We could pick a polynomial with zeros at the given points and its dot product with itself is 0.
@drpeyam
@drpeyam 5 жыл бұрын
I meant to say that if your space is Pn, then it’s enough to have it at n+1 points
@Rob-J-BJJ
@Rob-J-BJJ 4 жыл бұрын
thank you doctor
@gamedepths4792
@gamedepths4792 5 жыл бұрын
We need more videos on vector calculus please!
@drpeyam
@drpeyam 5 жыл бұрын
There’s a whole playlist on vector calculus
@MrNotinthemood
@MrNotinthemood 5 жыл бұрын
Lovely video! Could you perhaps do some videos on Topology, maybe some tricky compact space proof? Greetings from Sweden!
@drpeyam
@drpeyam 5 жыл бұрын
Check out my analysis playlist
@justins.2138
@justins.2138 5 жыл бұрын
Thanks!
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
Dot product of functions reminds me of quantummechanics. Sometimes, there's a discrete spectrum of eigenstates, like the two-dimensional "spin-phase-space" (↑ or ↓) Sometimes, there's a continuous spectrum with infinite possibilities, like the position of an electron in 3 dimension. Or 4 dimension??? Who knows? In short terms: Electron spin has "two" endstates & electron position has "infinite" endstates. But It's just lame physics, not maths ^^
@willnewman9783
@willnewman9783 5 жыл бұрын
I believe the one you defined for polynomials does not work. For any polynomial with p(0)=0, we have p dot p =0, but p itself doesnt have to be 0
@drpeyam
@drpeyam 5 жыл бұрын
Yeah, but something similar works for Pn if you evaluate it at n+1 points
@zuccx99
@zuccx99 5 жыл бұрын
What up early.
@Tomaplen
@Tomaplen 5 жыл бұрын
a.k.a. Metric Tensor
Legendre polynomials
11:09
Dr Peyam
Рет қаралды 36 М.
Inner Products and Inner Product Spaces | Linear Algebra
20:59
Wrath of Math
Рет қаралды 5 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Stanford University Admission Test Tricks ! |✍️🖋️📘💙
17:44
Inner Products in Hilbert Space
8:41
Steve Brunton
Рет қаралды 126 М.
Orthogonal Projections
30:14
Dr Peyam
Рет қаралды 11 М.
Basics of Inner Product Spaces
23:09
Scott Annin
Рет қаралды 55 М.
70 -  Inner product
1:05:08
הטכניון - מכון טכנולוגי לישראל
Рет қаралды 59 М.
Inner Product for Complex Vector Spaces
25:56
Jacob Bains
Рет қаралды 29 М.
Ch 4: What is an inner product? | Maths of Quantum Mechanics
10:11
Quantum Sense
Рет қаралды 128 М.
What Are Orthogonal Polynomials? Inner Products on the Space of Functions
10:52
Complex integrals are ... different.
14:12
Michael Penn
Рет қаралды 52 М.
Linear Algebra:  Inner Product Spaces (Sec. 5.2 Part 1)
23:02
Frank Forte
Рет қаралды 74 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН