So long story short: "How to calculate the dual basis?" 1) Write your basis vectors as column vectors in a matrix. 2) Invert that matrix 3) Your dual basis vectors are the row vectors of your inverted matrix
@javierpicazo21074 жыл бұрын
But id you that how can you get the expression he got?
@done72164 жыл бұрын
Yesterday i had my linear algebra exam and i literally forgot that dual basis even existed so i didn’t learn it. 10 minutes before the exam started i quickly tried to look if someone made a short video about it but this was the only one i found and i didn’t had that much time to watch it. Then i read your comment and this was the only thing i knew about this topic. Ironically, i had to calculate a dual basis and i did it exactly like you said (it was correct). Now i got the results and i passed it very very close. Long story short: without your comment i would have failed the exam and had to redo the class next year. So thank you stranger from the internet, you saved my semester 🙏🏻
@apolloo9068 Жыл бұрын
Three years later the video is still really useful, and it will be for years to come! Thanks for taking the time to make it.
@marcoaraujo__4 жыл бұрын
I study mathematics at the University of São Paulo (USP), and in this quarantine time I can't go there. My course is very abstract and I have many difficulties to understand the algebraic examples. I'm practicing the English, and you helped me so much in English and maths. Thanks
@ericluz60549 ай бұрын
3 anos depois, eu tô tendo algelin II com a professora Leila no IME-USP e o Dr. Peyam tá me salvando hahahahahaha
@marcoaraujo__9 ай бұрын
@@ericluz6054 Parabéns por ter entrado no IME!!! A Leila é um amor e o Dr. Peyam salva muito!!! No fim, percebi que boa parte dessa dificuldade com abstrações era por não ter um propósito claro na Pura e a frustração de pensar "poxa, por que to aprendendo isso?", situação essa que mudou após eu ter migrado pra Estat
@cezarionescu753 жыл бұрын
I'm doing my PhD and bachelor degree in physics (at the same time, long story) its nice to revisit old subjects that you taught you understood to find new ways of looking at them. I enjoyed this video a lot, will look at more of your videos and subscribe
@drpeyam3 жыл бұрын
Thank you!!!!
@robertbistone53662 жыл бұрын
How do you do a PhD in physics and a bachelors in physics at the same time?
@hansbaeker9769 Жыл бұрын
@@robertbistone5366 I knew an undergraduate math major who took just about every graduate course in math as an undergraduate and aced them. So it doesn't seem impossible for someone to do both a PhD and BS (or BA) in the same subject simultaneously.
@valentinfontanger49624 жыл бұрын
As a math student in quarantine, you are now my new hero
@marcoaraujo__4 жыл бұрын
He's my hero too
@61rmd12 жыл бұрын
very nice and useful video; it is easily transposed on R3 (and on Rn, of course...), with, for example (210), (310), and (011) as basis. It runs without any problem
@ambrishabhijatya78424 жыл бұрын
0:21 "Today I wanna sort of garnish it" My man be teaching Maths like a michelin star chef cooks dishes.
@lordexa5 жыл бұрын
I love that positivity, keep it up.
@tgeofrey5 жыл бұрын
I love ur devine Mathematician
@drpeyam5 жыл бұрын
❤️
@darkseid8563 жыл бұрын
While finding f1(x,y) , you expressed (x,y) in terms of standard basis , that is , x(1,0) + y(0,1) , But why ? In the problem , it's given that beta is our basis , (2,1) and (3,1) . So why didnt we express (x,y) in terms of these basis ?
@lynny7868 Жыл бұрын
my exact question
@DipsAndPushups5 ай бұрын
I didn't understand that too. Also, he said f(x,y) = 2x - 5y is arbitrary, but then he got 2x-5y by not plugging that f(x,y)=2x - 5y information anywhere. He got 2x - 5y just by picking the basis vectors to be (2,1) and (3,1). So, I don't understand how is f(x,y) = 2x - 5y arbitrary when he got 2x - 5y by only plugging in the information that basis vectors are (2,1) and (3,1) I would like to see an example of a vector expressed with bases (2,1) and (3,1). For instance, I would like to see what happens if the input vector is 11(2,1) + 7(3,1)
@navyawhig4 жыл бұрын
ABSOLUTELY AMAZING THANKYOU SO MUCH
@drpeyam4 жыл бұрын
❤️
@thecarlostheory Жыл бұрын
thx you a lot for this exercices. I´m impressed how we can discover the vector of the basis of a function.... each basis of each function must hide a very exiting natural and geometry meaning! i´m so impacient to discover that!
@unplandsitch3 жыл бұрын
thank you so much. It seems so easy explained like this.
@toanhocchanphuong3 ай бұрын
Great video. thanks a lot. Could you please give a geometrical interpretation of this dual basis?
@ETeHong3 ай бұрын
a good practical example!
@sumers93962 жыл бұрын
great explanation!!
@RB-jz1rr4 жыл бұрын
Can this problem be solved by not using standard basis, but rather the basis you used in beta? So insead of writing f_1(x,y) = (f_1(x(1,0) + y(0,1)) we would write x and y in terms of (2,1) and (3,1)
@nickname67648 ай бұрын
Thanks a lot for this video!
@KarlVilhelmssonEmneby8 ай бұрын
Thanks so much brother!
@hammockfinance30284 жыл бұрын
I was looking for a video on Dual Basis Rule of taxation in the USA. I guess I'm in the wrong place.
@rogue6343 Жыл бұрын
Incredible video
@dgrandlapinblanc5 жыл бұрын
Interesting. Thank you very much.
@DipsAndPushups5 ай бұрын
Can someone show me what happens if the input vector is 11(2,1) + 7(3,1)? Can someone calculate it please and show me the steps? I think that will help me clear things up a bit
@BlackanBlue004 жыл бұрын
Thank you this is very helpful
@xichengtang5844 жыл бұрын
Hi Dr. Peyam, I have a question about dual space. Suppose we have vector space U = P2, polynomials with degree up to 2. How do we use dual basis to express functional f(p(t)) = p(6)?
@drpeyam4 жыл бұрын
It’s in the playlist :)
@ThemJazzyBeats7 ай бұрын
Didn't we just end up computing the inverse of the matrix that has the 2 basis vectors of V as rows ? It seems that the 4 coefficients we solved for ---> f_1(1,0), f_1(0,1), f_2(1,0) and f_2(0,1), are respectively -1, 3, 1 and -2. If we organize (-1,3) as the first column of a matrix and (1,-2) as the second, than that matrix is precisely the inverse of the matrix containing the 2 basis vectors of V as columns. This CANNOT be a coincidence
@drpeyam7 ай бұрын
You’re right, it’s not a coincidence and it’s precisely because of what you said!
@ThemJazzyBeats7 ай бұрын
@@drpeyam We end up inverting because of the canonical basis that forms the identity matrix right ?
@drpeyam7 ай бұрын
Basically yes
@oli79084 жыл бұрын
Thank you for this video
@NAMEhzj5 жыл бұрын
Hey Dr. Peyam, cool stuff, but you probably didn't want ppl to see this yet right? (since it isnt listed) It can be seen on the dual spaces playlist right now.
@drpeyam5 жыл бұрын
I do want people to see it, in case they’re curious (and for my students), but I’ll release it on Saturday
@NAMEhzj5 жыл бұрын
@@drpeyam Ah I see :)
@highermathematics64945 жыл бұрын
B= { 1, x, x^2} how to solve dual basis
@drpeyam5 жыл бұрын
It would be {f1,f2,f3}, where f1(a+bx+cx^2)=a, f2(a+bx+cx^2) = b etc.
@highermathematics64945 жыл бұрын
Pls solve this one?
@drpeyam5 жыл бұрын
That’s the solution...
@Ixam13 Жыл бұрын
Thanks mate!
@sajidhaniff014 жыл бұрын
Thanks so much!
@santiagogomezpu4 жыл бұрын
Wonderful!
@nelsondavidcarbajalcusi99555 жыл бұрын
I love you
@wiloux5 жыл бұрын
Nice
@xnorgate58945 жыл бұрын
Um, I'm new here, I just can't figure you out bro. You sound arabic and german at the same time, look indian, what exactly are you?
@drpeyam5 жыл бұрын
I’m Persian but grew up in Austria and moved to the US when I was 16 :)
@sanelprtenjaca97765 жыл бұрын
Please make video in croatian. It is year after historical World Cup 2018 🗺⚽️🇭🇷