"There ain't no integer between 0 and 1." -Dr. Peyam, 2018
@JorgetePanete7 жыл бұрын
35cut that means there is
@nullplan017 жыл бұрын
Regarding this, I actually have a question: Is it possible to prove that 1/n! > sum(i=n+1..inf, 1/i!) for n > 0? Because if so I have a nice proof for e's irrationality. Let l_n = sum(i=0..n, 1/i!). All l_n < e (Proof: e - l_n = sum(i=n + 1..inf, 1/i!) > 0). Let u_n = l_n + 1/n!. All u_n > e, except u_0 (Proof: u_n - e > 0 is equivalent to sum(i=n+1..inf, 1/i!) > 1/n!, and that's the part I still need). All l_n are rational, since only rational numbers are used in the formula, and only operations the rational numbers are closed against, and only finitely many times. In fact, there exists an integer a, such that l_n = a/n! and u_n = (a+1)/n!. Proof: When adding two rational numbers m/n + c/d, it is always possible to write its denominator as the scm(n,d). If a < b, then gcd(a!, b!) = a!, since both factorials share all factors up to a. Therefore scm(a!, b!) = (a! b!)/a! = b!. Therefore, adding two rational numbers with factorial denominators gives a new number with a factorial denominator. The calculation of l_n always starts with a factorial denominator (0!), and only adds numbers with a factorial denominator, up to n!. Therefore l_n is a rational number with n! as denominator. u_n only adds exactly 1 to the numerator. This means that for all n>0, there is no rational number between l_n and u_n with a denominator at or below n!. So, to review, e is between all l_n and u_n (for n > 0), but no rational number with a denominator
@antimatter23766 жыл бұрын
Get a keyboard that let's you do ᵗₕⁱₛ. Superscripts and subscripts. It will make things so much easier to understand
@Xrelent5 жыл бұрын
Or use a free online LaTeX editor and post a link :)) tex.stackexchange.com/questions/3/compiling-documents-online for options
@Xrelent5 жыл бұрын
Proof of your assumption: www.overleaf.com/read/hvrdnqwdhnkk Edit: Totally misread part of your proof. Hit me while I was at work today. Had to come back to say that your proof totally works.
@Myuri31467 жыл бұрын
can you do a video of how to prove pi/e are transcendental numbers?
@drpeyam7 жыл бұрын
I’ll think about it :)
@Xrelent5 жыл бұрын
@100najaja5 жыл бұрын
@@Xrelent There is a proof it's just not discovered yet :)
@numbermathematics41377 жыл бұрын
1 day before I made a video on understanding Euler's number in 2 parts and today you are making video on irrationality of Euler's number. When I saw this I got excited. ~Rajarshi maiti
@snakespeak7 жыл бұрын
A very rational argument to prove irrationality, almost Godellian.
@AvinashtheIyerHaHaLOL7 жыл бұрын
This is a really nice proof. I liked the method, and it was easy to follow. Never stop uploading, Dr. Peyam.
@hellgate250007 жыл бұрын
seriously one of my favorite channels. you inspire me to give these presentations and fully understand proofs.
@martinepstein98267 жыл бұрын
Nice! I'm guessing the transcendental proof is quite hard, but I would love to see a derivation of the continued fraction expansion.
@gabrielmello32937 жыл бұрын
Just watch a video on what a taylor series is (you need to know first principles or the CHEN-LU) and use it on e^x.
@martinepstein98267 жыл бұрын
Gabriel Mello Yes, power series is one kind of expansion that usually involves fractions. But it's not a continued fraction expansion.
@pco2467 жыл бұрын
There is a general method to find the continued fraction expansion for any real number. Mathologer has a great video on the topic if you're intereseted :)
@martinepstein98267 жыл бұрын
PCreeper394 What I mean is that the continued fraction expansion of e follows a certain pattern; [2;1,2,1,1,4,1,1,6,1,1,8,1,1,...] and I don't know why that is or how to prove that the pattern holds indefinitely.
@SefJen4 жыл бұрын
For the end of the proof (21:52) , it's not necessary to precise that X < sigma because further (23:37) , you will be able to say that 1/b
@wojtek93957 жыл бұрын
The first video I understood
@JuanDeLaCruz-wx2pf7 жыл бұрын
Yeah!, Starting very well the year, thank you Dr.Peyam. Happy New year and now a proof of π please
@pawenowak29387 жыл бұрын
Juan De La Cruz Dr if u dont mind u could also explain some formulas for calculating pi in aproximation. Love videos like this
@karstenmeinders48447 жыл бұрын
Great proof!Could you present videos on the Fourier Transformation? Thx and BR
@hassanalihusseini17177 жыл бұрын
Nice way to proove that! Thank as lot , Dr. Peyam.
@masheroz7 жыл бұрын
Have you done a proof of the taylor expansion?
@drpeyam7 жыл бұрын
It’s basically just the definition of the Taylor series, as well as the fact that the n th derivative of e^x is e^x, hence for x = 0 it’s 1.
@ImPresSiveXD7 жыл бұрын
Very nice! Could you also show that e and pi are transcendental numbers?
@drpeyam7 жыл бұрын
I’ll think about it :)
@ImPresSiveXD7 жыл бұрын
Ok, thank you :D
@manla83977 жыл бұрын
Absolutely love it. Very well explained. Thank you and happy new year.
@Zeboss3217 жыл бұрын
If you are interested, Dr Peyam, there is a belgian statistician making great videos in french on probabilities, RNG, distributions, election processes, etc. It is called "La statistique expliquée à mon chat" and the aim is for the author to explain statistics to Albert, his cat. I expect you will not learn much new content, but you know, for pedagogical purposes.
@drpeyam7 жыл бұрын
Thanks for the suggestion :D
@Zeboss3217 жыл бұрын
My pleasure =)
@fernandoraphael957 жыл бұрын
Happy new year Dr. Peyam!!!
@mattikemppinen67502 жыл бұрын
your sigma looks like a cool designer vase :D with infinity flower in it!
@MrRyanroberson17 жыл бұрын
so 2
@drpeyam7 жыл бұрын
Yep :)
@MrRyanroberson17 жыл бұрын
how to prove e^pi, pi^e, ln(pi), log pi(e)=1/ln(pi), etc (binary operations with e, pi as operands) are irrational?
@drpeyam7 жыл бұрын
I’m guessing that’s pretty hard because even proving e + pi is irrational or not is still an open problem! :O
@MrRyanroberson17 жыл бұрын
really?? but if e+pi IS rational, we could trivially calculate pi as R-e, just memorizing R, with e being one of the easiest-to-calculate irrational numbers out there....
@MrRyanroberson17 жыл бұрын
idea: imagine two circles. one of diameter 1, and another of d=d such that the circumferences are pi, e. a circle with diameter = d+1 has a rational circumference. as such, its diameter of c/pi must be irrational. but c=e+pi; c/pi=(e/pi)+1, therefore e/pi is irrational since 1 is rational and their sum must be irrational (by the theory irr+rat=irr) if e/pi is rational, the converse can be proven: imagine a circle with diameter D such that c=e+pi. the diameter is therefore (e/pi)+1, but e/pi is rational therefore the diameter is rational. next, since the diameter is rational, any multiple of a rational number by an irrational is irrational (except by 0, but e/pi is not 0 as e>pi>0) and c=pi*D therefore c=irrational=e+pi proposing one is rational will prove the other cannot be. maybe you could do a video relating all of these dependencies, and find some *circular* logic proving that none can be rational? (pun not intended but gladly embraced)
@mohammadrehan85644 жыл бұрын
Again a lovely proof❤️
@jwyliecullick89764 жыл бұрын
Nature is beautiful, and has a whimsical sense of humor.
@michelsantana26423 жыл бұрын
e=a/b where a and b are integers such that gcd(a,b)=1; a>0, b>1
@dolevgo85357 жыл бұрын
8:10 why cant a,b be negative?
@drpeyam7 жыл бұрын
First of all, e > 0, so a and b must have the same sign. Also if a and b are both negative, then -a and -b are both positive and e = a/b = -a/-b, so without loss of generality we can assume a and b to be positive!
@dolevgo85357 жыл бұрын
okay, thanks!
@JorgetePanete7 жыл бұрын
dolev goaz can't*
@dolevgo85357 жыл бұрын
Jorgete Panete just don't
@MrRyanroberson17 жыл бұрын
If you prove e=[2;1,2,1,1,4,1,1,6,1...] then already p,q are indefinitely large and therefore do not fit the definition of some finite p,q where R=p/q
@gabrielmello32937 жыл бұрын
What do you mean by "e=[2;1,2,1,1,4,1,1,6,1...]"?
@MrRyanroberson17 жыл бұрын
continued fraction notation [a;b,c,d...]=a+1/(b+1/(c+1/(d+1/...))) there exists a proof that e is exactly that continuation, but either way you can get the expansion of a number by repeatedly taking modulo 1 and reciprocating it, writing down the amount the modulo removed. 35/101=0+1/(101/35); 101/35=2+1/(35/31); 35/31=1+1/(31/4); 31/4=7+1/(4/3); 4/3=1+1/3. thus the continued fraction is [0;2,1,7,1,3]
@Xrelent5 жыл бұрын
@@angelmendez-rivera351 Actually, this was how Euler proved e's irrationality and it was even the first such proof of e's irrationality!
@helixkirby7 жыл бұрын
Could you have ignored the fact that b!=1 and still (1/b)
@drpeyam7 жыл бұрын
I think that should be ok, as long as one strict inequality remains. Of course we could have n = 1, which might be problematic!
@SlingerDomb7 жыл бұрын
i just love Dr.Peyam jokes
@OonHan7 жыл бұрын
pi?
@drpeyam7 жыл бұрын
Coming soon-ish :)
@김간디174 жыл бұрын
The proof is juicy! Thank you!
@quickmath82907 жыл бұрын
Well done you have astonished me 😊
@camiv615 жыл бұрын
We love you back
@michelsantana26423 жыл бұрын
Beautiful proof!!!
@michalbotor6 жыл бұрын
beautiful! it was very easy to follow and understand. thank you. ;)
@broccoloodle3 жыл бұрын
It would be nicer if the proof was a direct proof. Great presentation, btw
@ysapir846 жыл бұрын
Great proof, as always!
@eliascaeiro54397 жыл бұрын
Pretty neat, very nice!
@nickstenerson63107 жыл бұрын
I
@Rolljack7 жыл бұрын
Thank you
@manu_j_7 жыл бұрын
Fantastic
@znhait6 жыл бұрын
This again shows why infinity is only considered a concept. One can never treat it as any sort of number. The series of e^1 if stopped at whatever large value of n will be that of a rational number since we are just adding rational numbers together. However, we know that e is irrational and can't be written as a ratio of integers.
@alihajmomeni2751 Жыл бұрын
Perfect🤌🤌🤌
@AnotherZoruaAmongUs7 жыл бұрын
That feeling when Dr. Peyam accidentally puts down that 2^3=6...
@jussibusy7 жыл бұрын
5:23 I understood it was 3!=6 because he kept the four first terms of Σ 1/n! intact.
@drpeyam7 жыл бұрын
No, I wrote 1/3! = 1/6, I replaced all the terms starting with n = 4 with 2^n since the formula is valid for n greater than or equal to 4. JSonic1000 is correct about this